Skip to main content
Log in

A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids)

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Metal nanoparticles (NPs) are a subject of global interest in research community due to their diverse applications in various fields of science. The stabilization of these metal NPs is of great concern in order to avoid their agglomerization during their applications. There is a huge pool of cations and anions available for the selection of ionic liquids (ILs) as stabilizers for the synthesis of metal NPs. ILs are known for their tunable nature allowing the fine tuning of NPs size and solubility by varying the substitutions on the heteroatom as well as the counter anions. However, there has been a debate over the stability of metal NPs stabilized by ILs over a long period of time and also upon their recycling and reuse in organocatalytic reactions. ILs covalently attached to solid supports (SILLPs) have given a new dimension for the stabilization of metal NPs as well as their separation, recovery, and reuse in organocatalytic reactions. Poly(ILs) (PILs) or polyelectrolytes have created a significant revolution in the polymer science owing to their characteristic properties of polymers as well as ILs. This dual behavior of PILs has facilitated the stabilization of PIL-stabilized metal NPs over a long period of time with negligible or no change in particle size, stability, and size distribution upon recycling in catalysis. This review provides an insight into the different types of imidazolium-based ILs, supported ILs, and PILs used so far for the stabilization of metal NPs and their applications as a function of their cations and counter anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

[EMIM][NTf2]:

1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide

[BMIM][Br]:

1-Butyl-3-methylimidazolium bromide

[BMIM][BF4]:

1-Butyl-3-methylimidazolium tetrafluoroborate

[BMIM][PF6]:

1-Butyl-3-methylimidazolium hexafluorophosphate

[BMIM][NTf2]:

1-Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide

[RMIM][NTf2]:

1-Alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide

Poly(DADMAC):

Poly(diallyldimethylammonium chloride)

P[ViEtIm][BH3CN]:

Poly(1-vinyl–ethyl imidazolium cyanoborohydride)

P[ViEtIm][Br]:

Poly(1-vinyl-3-ethylimidazolium bromide)

P[ViBuIm][Br]:

Poly(1-vinyl-3-butylimidazolium bromide)

P[ViPIm][Br]:

Poly(1-vinyl-3-pentylimidazolium bromide)

References

  • Alexandridis P (2011) Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem Eng Technol 34(1):15–28

    Article  Google Scholar 

  • Anderson EB, Long TE (2010) Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer 51(12):2447–2454

    Article  Google Scholar 

  • Anja-Verena M, Tarek A, Tobias B, Kai R (2009) Nanoparticle synthesis in ionic liquids: from knowledge to application. In: ACS symposium series, vol 1030. American Chemical Society, pp 177–188

  • Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43(38):4988–4992

    Article  Google Scholar 

  • Astruc D (2008) Nanoparticles and catalysis. Wiley Online Library, Weinheim

    Google Scholar 

  • Batra D, Seifert S, Firestone MA (2007) The effect of cation structure on the mesophase architecture of self-assembled and polymerized imidazolium-based ionic liquids. Macromol Chem Phys 208(13):1416–1427

    Article  Google Scholar 

  • Baudequin C, Baudoux J, Levillain J, Cahard D, Gaumont A-C, Plaquevent J-C (2003) Ionic liquids and chirality: opportunities and challenges. Tetrahedron Asymmetry 14:3081–3093

    Article  Google Scholar 

  • Bivona LA, Giacalone F, Vaccaro L, Aprile C, Gruttadauria M (2015) Cross-linked thiazolidine network as support for palladium: a new catalyst for Suzuki and Heck reactions. ChemCatChem 7(16):2526–2533

    Article  Google Scholar 

  • Burguete MI, García-Verdugo E, Garcia-Villar I, Gelat F, Licence P, Luis SV, Sans V (2010) Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): a remarkable effect of the nature of the support. J Catal 269(1):150–160

    Article  Google Scholar 

  • Burguete IM, García-Verdugo E, Luis SV, Restrepo JA (2011) Preparation of polymer-supported gold nanoparticles based on resins containing ionic liquid-like fragments: easy control of size and stability. Phys Chem Chem Phys 13(33):14831–14838

    Article  Google Scholar 

  • Buscemi R, Giacalone F, Orecchio S, Gruttadauria M (2014) Cross-linked imidazolium salts as scavengers for palladium. ChemPlusChem 79(3):421–426

    Article  Google Scholar 

  • Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific, Singapore

    Book  Google Scholar 

  • Caseri WR (2013) In-situ synthesis of polymer-embedded nanostructures. In: Nicolais L, Carotenuto G (eds) Nanocomposites. Wiley, New Jersey, pp 45–72

    Chapter  Google Scholar 

  • Cassol CC, Umpierre AP, Machado G, Wolke SI, Dupont J (2005) The role of Pd nanoparticles in ionic liquid in the Heck reaction. J Am Chem Soc 127(10):3298–3299

    Article  Google Scholar 

  • Chu H, Shen Y, Lin L, Qin X, Feng G, Lin Z, Wang J, Liu H, Li Y (2010) Ionic-liquid-assisted preparation of carbon nanotube-supported uniform noble metal nanoparticles and their enhanced catalytic performance. Adv Funct Mater 20(21):3747–3752

    Article  Google Scholar 

  • Chun YS, Shin JY, Song CE, Lee S-g (2008) Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem Commun (8):942–944. doi:10.1039/b715463a

  • Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Rühm A, Lennox RB (2001) Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123(42):10411–10412

    Article  Google Scholar 

  • Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34(3):181–190

    Article  Google Scholar 

  • Dani A, Crocellà V, Maddalena L, Barolo C, Bordiga S, Groppo E (2015) A spectroscopic study on the surface properties and catalytic performances of Pd nanoparticles in poly(ionic liquid)s. J Phys Chem C 120(3):1683–1692

    Article  Google Scholar 

  • Deki S, Sayo K, Fujita T, Yamada A, Hayashi S (1999) Dispersion of nano-sized gold particles into polymers: dependence on terminal groups of polymers and morphology of vapor-deposited gold. J Mater Chem 9(4):943–947

    Article  Google Scholar 

  • Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14:733–762

    Google Scholar 

  • Domènech B, Muñoz M, Muraviev DN, Macanás J (2011) Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication. Nanoscale Res Lett 6:1–5

    Article  Google Scholar 

  • Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39(5):1780–1804

    Article  Google Scholar 

  • Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124(16):4228–4229

    Article  Google Scholar 

  • Dutta P, Pal S, Seehra MS, Anand M, Roberts CB (2007) Magnetism in dodecanethiol-capped gold nanoparticles: role of size and capping agent. Appl Phys Lett 90(21):213102

    Article  Google Scholar 

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    Article  Google Scholar 

  • Fedlheim DL, Foss CA (2001) Metal nanoparticles: synthesis, characterization, and applications. Taylor and Francis, London

    Google Scholar 

  • Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) The use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem Eur J 9(14):3263–3269

    Article  Google Scholar 

  • Fonseca GS, Machado G, Teixeira SR, Fecher GH, Morais J, Alves MCM, Dupont J (2006) Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. J Colloid Interface Sci 301(1):193–204

    Article  Google Scholar 

  • Gelesky MA, Umpierre AP, Machado G, Correia RRB, Magno WC, Morais J, Ebeling G, Dupont J (2005) Laser-induced fragmentation of transition metal nanoparticles in ionic liquids. J Am Chem Soc 127(13):4588–4589

    Article  Google Scholar 

  • Gelesky MA, Scheeren CW, Foppa L, Pavan FA, Dias SLP, Dupont J (2009) Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions. Biomacromolecules 10(7):1888–1893

    Article  Google Scholar 

  • Gonzalez CM, Liu Y, Scaiano JC (2009) Photochemical strategies for the facile synthesis of gold–silver alloy and core–shell bimetallic nanoparticles. J Phys Chem C 113(27):11861–11867

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  Google Scholar 

  • Gracia R, Vijayakrishna K, Mecerreyes D (2014) Poly(ionic liquid)s with redox active counter-anions: all-in-one reactants and stabilizers for the synthesis of functional colloids. React Funct Polym 79:54–58

    Article  Google Scholar 

  • Grubbs RB (2007) Roles of polymer ligands in nanoparticle stabilization. Polym Rev 47(2):197–215

    Article  Google Scholar 

  • Gruttadauria M, Liotta LF, Salvo AMP, Giacalone F, La Parola V, Aprile C, Noto R (2011) Multi-layered, covalently supported ionic liquid phase (MLC-SILP) as highly cross-linked support for recyclable palladium catalysts for the Suzuki reaction in aqueous medium. Adv Synth Catal 353(11–12):2119–2130

    Article  Google Scholar 

  • Gu Y, Li G (2009) Ionic liquids-based catalysis with solids: state of the art. Adv Synth Catal 351(6):817–847

    Article  Google Scholar 

  • Gutel T, Garcia-Anton J, Pelzer K, Philippot K, Santini CC, Chauvin Y, Chaudret B, Basset J-M (2007) Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles: effect of the temperature and stirring. J Mater Chem 17(31):3290–3292

    Article  Google Scholar 

  • Hajipour AR, Rafiee F (2015) Recent progress in ionic liquids and their applications in organic synthesis. Org Prep Proced Int 47(4):249–308

    Article  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis 2. Chem Rev 111(5):3508–3576

    Article  Google Scholar 

  • He Z, Alexandridis P (2015) Nanoparticles in ionic liquids: interactions and organization. Phys Chem Chem Phys 17(28):18238–18261

    Article  Google Scholar 

  • He X, Liu Z, Fan F, Qiang S, Cheng L, Yang W (2015) Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis. J Nanopart Res 17(74):1–10

    Article  Google Scholar 

  • Hoppe CE, Lazzari M, Pardiñas-Blanco I, López-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22(16):7027–7034

    Article  Google Scholar 

  • Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G (2004) Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. Angew Chem Int Ed 43(11):1397–1399

    Article  Google Scholar 

  • Hubert F, Testard F, Spalla O (2008) Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. Langmuir 24(17):9219–9222

    Article  Google Scholar 

  • Hutchings GJ, Brust M, Schmidbaur H (2008) Gold—an introductory perspective. Chem Soc Rev 37(9):1759–1765

    Article  Google Scholar 

  • Isik M, Fernandes AM, Vijayakrishna K, Paulis M, Mecerreyes D (2016) Preparation of poly(ionic liquid) nanoparticles and their novel application as flocculants for water purification. Polym Chem 7(8):1668–1674

    Article  Google Scholar 

  • Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126(10):3026–3027

    Article  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  Google Scholar 

  • Karbass N, Sans V, Garcia-Verdugo E, Burguete MI, Luis SV (2006) Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtoH. Chem Commun (29):3095–3097

  • Ke P, Jiao X-N, Ge X-H, Xiao W-M, Yu B (2014) From macro to micro: structural biomimetic materials by electrospinning. RSC Adv 4(75):39704–39724

    Article  Google Scholar 

  • Kim JW, Choi BG (2014) Polymeric ionic liquid-promoted high dispersion of Pt nanoparticles on graphene. Mater Lett 132:373–376

    Article  Google Scholar 

  • Kim K-S, Demberelnyamba D, Lee H (2004) Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20(3):556–560

    Article  Google Scholar 

  • Kim T, Lee K, M-s Gong, Joo S-W (2005) Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir 21(21):9524–9528

    Article  Google Scholar 

  • Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2010) High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5(1):436–442

    Article  Google Scholar 

  • Krämer J, Redel E, Thomann R, Janiak C (2008) Use of ionic liquids for the synthesis of iron, ruthenium, and osmium nanoparticles from their metal carbonyl precursors. Organometallics 27(9):1976–1978

    Article  Google Scholar 

  • Kume Y, Qiao K, Tomida D, Yokoyama C (2008) Selective hydrogenation of cinnamaldehyde catalyzed by palladium nanoparticles immobilized on ionic liquids modified-silica gel. Catal Commun 9(3):369–375

    Article  Google Scholar 

  • Kundu TK, Karak N, Barik P, Saha S (2011) Optical properties of ZnO nanoparticles prepared by chemical method using poly(vinyl alcohol) (PVA) as capping agent. IJSCE 1:19–24

    Google Scholar 

  • Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, Holecová M, Zbořil R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834

    Article  Google Scholar 

  • Lee W, Scholz R, Nielsch K, Gösele U (2005) A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew Chem Int Ed 44(37):6050–6054

    Article  Google Scholar 

  • Leong WL, Lee PS, Lohani A, Lam YM, Chen T, Zhang S, Dodabalapur A, Mhaisalkar SG (2008) Non-volatile organic memory applications enabled by in situ synthesis of gold nanoparticles in a self-assembled block copolymer. Adv Mater 20(12):2325–2331

    Article  Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783

    Article  Google Scholar 

  • Li J, Liang J, Wu W, Zhang S, Zhang K, Zhou H (2014) AuCl4 responsive self-assembly of ionic liquid block copolymers for obtaining composite gold nanoparticles and polymeric micelles with controlled morphologies. N J Chem 38(6):2508–2513

    Article  Google Scholar 

  • Li L, Liu X, Lu J, Liu Y, Lu X (2015a) A green electrochemical sensor based on a poly(ionic liquid)–graphene nanocomposite modified electrode for Sudan I determination. Anal Methods 7:6595–6601

    Article  Google Scholar 

  • Li JB, Zhang SJ, Liang J, Wu WL, Guo JW, Zhou HY (2015b) One-dimensional assembly of polymeric ionic liquid capped gold nanoparticles driven by electrostatic dipole interaction. RSC Adv 5(11):7994–8001

    Article  Google Scholar 

  • Linhardt R, Kainz QM, Grass RN, Stark WJ, Reiser O (2014) Palladium nanoparticles supported on ionic liquid modified, magnetic nanobeads—recyclable, high-capacity catalysts for alkene hydrogenation. RSC Adv 4(17):8541–8549

    Article  Google Scholar 

  • Lowe AB, Sumerlin BS, Donovan MS, McCormick CL (2002) Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition–fragmentation chain transfer polymerization. J Am Chem Soc 124(39):11562–11563

    Article  Google Scholar 

  • Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34(5):431–448

    Article  Google Scholar 

  • Łuczak J, Paszkiewicz M, Krukowska A, Malankowska A, Zaleska-Medynska A (2016) Ionic liquids for nano- and microstructures preparation. Part 2: application in synthesis. Adv Colloid Interface Sci 227:1–52

    Article  Google Scholar 

  • Luska KL, Julis J, Stavitski E, Zakharov DN, Adams A, Leitner W (2014) Bifunctional nanoparticle-SILP catalysts (NPs@SILP) for the selective deoxygenation of biomass substrates. Chem Sci 5(12):4895–4905

    Article  Google Scholar 

  • Luska KL, Migowski P, El Sayed S, Leitner W (2015a) Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols. Angew Chem Int Ed 54(52):15750–15755

    Article  Google Scholar 

  • Luska KL, Migowski P, Leitner W (2015b) Ionic liquid-stabilized nanoparticles as catalysts for the conversion of biomass. Green Chem 17(6):3195–3206

    Article  Google Scholar 

  • Macanás J, Farre M, Muñoz M, Alegret S, Muraviev DN (2006) Preparation and characterization of polymer-stabilized metal nanoparticles for sensor applications. Phys status solidi (a) 203(6):1194–1200

    Article  Google Scholar 

  • Mallick K, Witcomb MJ, Scurrell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 39(14):4459–4463

    Article  Google Scholar 

  • Manojkumar K, Prabhu Charan KT, Sivaramakrishna A, Jha PC, Khedkar VM, Siva R, Jayaraman G, Vijayakrishna K (2015) Biophysical characterization and molecular docking studies of imidazolium based polyelectrolytes–DNA complexes: role of hydrophobicity. Biomacromolecules 16(3):894–903

    Article  Google Scholar 

  • Mao H, Liang J, Zhang H, Pei Q, Liu D, Wu S, Zhang Y, Song X-M (2015) Poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid. Biosens Bioelectron 70:289–298

    Article  Google Scholar 

  • Marcilla R, Curri ML, Cozzoli PD, Martínez MT, Loinaz I, Grande H, Pomposo JA, Mecerreyes D (2006) Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle. Small 2(4):507–512

    Article  Google Scholar 

  • Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36(12):1629–1648

    Article  Google Scholar 

  • Migowski P, Dupont J (2007) Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem Eur J 13(1):32–39

    Article  Google Scholar 

  • Migowski P, Machado G, Texeira SR, Alves MCM, Morais J, Traverse A, Dupont J (2007) Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys Chem Chem Phys 9(34):4814–4821

    Article  Google Scholar 

  • Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27(16):1346–1354

    Article  Google Scholar 

  • Mohan B, Woo H, Jang S, Lee S, Park S, Park KH (2013) Synthesis of monodisperse Cu nanoparticles in Ionic Liquids: a synthetic and catalytic approach of in situ nanoparticles. Solid State Sci 22:16–20

    Article  Google Scholar 

  • Mu X-d, Meng J-q, Li Z-C, Kou Y (2005) Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation. J Am Chem Soc 127(27):9694–9695

    Article  Google Scholar 

  • Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84(2):322

    Article  Google Scholar 

  • Muraviev DN, Macanás J, Farre M, Muñoz M, Alegret S (2006) Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devices. Sens Actuator B 118(1–2):408–417

    Article  Google Scholar 

  • Niu Z, Li Y (2013) Removal and utilization of capping agents in nanocatalysis. Chem Mater 26(1):72–83

    Article  Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  Google Scholar 

  • Pachón LD, Rothenberg G (2008) Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organomet Chem 22(6):288–299

    Article  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzán LM (1999) Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir 15(4):948–951

    Article  Google Scholar 

  • Pavia C, Ballerini E, Bivona LA, Giacalone F, Aprile C, Vaccaro L, Gruttadauria M (2013) Palladium supported on cross-linked imidazolium network on silica as highly sustainable catalysts for the Suzuki reaction under flow conditions. Adv Synth Catal 355(10):2007–2018

    Article  Google Scholar 

  • Petrucci C, Strappaveccia G, Giacalone F, Gruttadauria M, Pizzo F, Vaccaro L (2014) An E-factor minimized protocol for a sustainable and efficient Heck reaction in flow. ACS Sustain Chem Eng 2(12):2813–2819

    Article  Google Scholar 

  • Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108(3):945–951

    Article  Google Scholar 

  • Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  Google Scholar 

  • Prabhu Charan KT, Pothanagandhi N, Vijayakrishna K, Sivaramakrishna A, Mecerreyes D, Sreedhar B (2014) Poly(ionic liquids) as “smart” stabilizers for metal nanoparticles. Eur Polym J 60:114–122

    Article  Google Scholar 

  • Qin Y, Ji X, Jing J, Liu H, Wu H, Yang W (2010) Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf A 372(1–3):172–176

    Article  Google Scholar 

  • Qureshi Z, Deshmukh K, Bhanage B (2014) Applications of ionic liquids in organic synthesis and catalysis. Clean Technol Environ Policy 16(8):1487–1513

    Article  Google Scholar 

  • Ramesh GV, Porel S, Radhakrishnan TP (2009) Polymer thin films embedded with in situ grown metal nanoparticles. Chem Soc Rev 38(9):2646–2656

    Article  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  Google Scholar 

  • Redel E, Krämer J, Thomann R, Janiak C (2009) Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquids and their use as biphasic liquid–liquid hydrogenation nanocatalysts for cyclohexene. J Organomet Chem 694(7–8):1069–1075

    Article  Google Scholar 

  • Restrepo J, Lozano P, Burguete MI, García-Verdugo E, Luis SV (2015a) Gold nanoparticles immobilized onto supported ionic liquid-like phases for microwave phenylethanol oxidation in water. Catal Today 255:97–101

    Article  Google Scholar 

  • Restrepo J, Porcar R, Lozano P, Burguete MI, García-Verdugo E, Luis SV (2015b) Microwave-assisted selective oxidation of 1-phenyl ethanol in water catalyzed by metal nanoparticles immobilized onto supported ionic liquid like phases. ACS Catal 5(8):4743–4750

    Article  Google Scholar 

  • Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Supported ionic liquids: versatile reaction and separation media. Top Catal 40(1):91–102

    Article  Google Scholar 

  • Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102(10):3757–3778

    Article  Google Scholar 

  • Saliba S, Valverde Serrano C, Keilitz J, Kahn ML, Mingotaud C, Haag R, Marty J-D (2010) Hyperbranched polymers for the formation and stabilization of ZnO nanoparticles. Chem Mater 22(23):6301–6309

    Article  Google Scholar 

  • Sans V, Gelat F, Karbass N, Burguete MI, García-Verdugo E, Luis SV (2010) Polymer cocktail: a multitask supported ionic liquid-like species to facilitate multiple and consecutive C–C coupling reactions. Adv Synth Catal 352(17):3013–3021

    Article  Google Scholar 

  • Scheeren CW, Machado G, Dupont J, Fichtner PFP, Texeira SR (2003) Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg Chem 42(15):4738–4742

    Article  Google Scholar 

  • Scheeren CW, Machado G, Teixeira SR, Morais J, Domingos JB, Dupont J (2006) Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. J Phys Chem B 110(26):13011–13020

    Article  Google Scholar 

  • Scholten JD, Dupont J (2014) Hydrogenation with nanoparticles using supported ionic liquids. In: Supported ionic liquids: fundamentals and applications. Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim, pp 263–278

  • Shang L, Qin C, Wang T, Wang M, Wang L, Dong S (2007) Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine. J Phys Chem C 111(36):13414–13417

    Article  Google Scholar 

  • Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2011) One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem 21(10):3415–3421

    Article  Google Scholar 

  • Stankus DP, Lohse SE, Hutchison JE, Nason JA (2010) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45(8):3238–3244

    Article  Google Scholar 

  • Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133

    Article  Google Scholar 

  • Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide–trioctylphospine mixture. Nano Lett 1(4):207–211

    Article  Google Scholar 

  • Umpierre AP, Machado G, Fecher GH, Morais J, Dupont J (2005) Selective hydrogenation of 1,3-butadiene to 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids. Adv Synth Catal 347(10):1404–1412

    Article  Google Scholar 

  • Verwey EJW, Overbeek JTg (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Vijayakrishna K, Jewrajka SK, Ruiz A, Marcilla R, Pomposo JA, Mecerreyes D, Taton D, Gnanou Y (2008) Synthesis by RAFT and ionic responsiveness of double hydrophilic block copolymers based on ionic liquid monomer units. Macromolecules 41(17):6299–6308

    Article  Google Scholar 

  • Vijayakrishna K, Mecerreyes D, Gnanou Y, Taton D (2009) Polymeric vesicles and micelles obtained by self-assembly of ionic liquid-based block copolymers triggered by anion or solvent exchange. Macromolecules 42(14):5167–5174

    Article  Google Scholar 

  • Vijayakrishna K, Manojkumar K, Sivaramakrishna A (2015) Ionic liquids as solvents and/or catalysts in polymerization. In: Mecerreyes D (ed) Applications of ionic liquids in polymer science and technology. Springer, Berlin, pp 355–387

    Google Scholar 

  • Vijayakrishna K, Charan KTP, Manojkumar K, Venkatesh S, Pothanagandhi N, Sivaramakrishna A, Mayuri P, Kumar AS, Sreedhar B (2016) Ni nanoparticles stabilized by poly(ionic liquids) as chemoselective and magnetically recoverable catalysts for transfer hydrogenation reactions of carbonyl compounds. ChemCatChem 8(6):1139–1145

    Article  Google Scholar 

  • Virtanen P, Karhu H, Kordas K, Mikkola J-P (2007) The effect of ionic liquid in supported ionic liquid catalysts (SILCA) in the hydrogenation of unsaturated aldehydes. Chem Eng Sci 62(14):3660–3671

    Article  Google Scholar 

  • Virtanen P, Mikkola J-P, Toukoniitty E, Karhu H, Kordas K, Eränen K, Wärnå J, Salmi T (2009a) Supported ionic liquid catalysts—from batch to continuous operation in preparation of fine chemicals. Catal Today 147(Supplement):S144–S148

    Article  Google Scholar 

  • Virtanen P, Salmi T, Mikkola J-P (2009b) Kinetics of cinnamaldehyde hydrogenation by supported ionic liquid catalysts (SILCA). Ind Eng Chem Res 48(23):10335–10342

    Article  Google Scholar 

  • Vollmer C, Janiak C (2011) Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord Chem Rev 255(17–18):2039–2057

    Article  Google Scholar 

  • Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardacre C, Janiak C (2010) Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal–carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid–liquid hydrogenation nanocatalysts for cyclohexene. Chem Eur J 16(12):3849–3858

    Article  Google Scholar 

  • Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4(10):2047–2050

    Article  Google Scholar 

  • Wang Y, Yang H (2005) Synthesis of CoPt nanorods in ionic liquids. J Am Chem Soc 127(15):5316–5317

    Article  Google Scholar 

  • Wang Y, Yang H (2006) Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chem Commun (24):2545–2547

  • Wang Z, Zhang Q, Kuehner D, Xu X, Ivaska A, Niu L (2008) The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis. Carbon 46(13):1687–1692

    Article  Google Scholar 

  • Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135

    Article  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  Google Scholar 

  • Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778–1780

    Article  Google Scholar 

  • Yang X, Fei Z, Zhao D, Ang WH, Li Y, Dyson PJ (2008) Palladium nanoparticles stabilized by an ionic polymer and ionic liquid: a versatile system for C–C cross-coupling reactions. Inorg Chem 47(8):3292–3297

    Article  Google Scholar 

  • Yang Z-Z, Zhao Y, Ji G, Zhang H, Yu B, Gao X, Liu Z (2014) Fluoro-functionalized polymeric ionic liquids: highly efficient catalysts for CO2 cycloaddition to cyclic carbonates under mild conditions. Green Chem 16(8):3724–3728

    Article  Google Scholar 

  • Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670

    Article  Google Scholar 

  • Yuan J, Wunder S, Warmuth F, Lu Y (2012) Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer 53(1):43–49

    Article  Google Scholar 

  • Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38(7):1009–1036

    Article  Google Scholar 

  • Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25(5):2604–2612

    Article  Google Scholar 

  • Zhang Y, Chen X, Lan J, You J, Chen L (2009) Synthesis and biological applications of imidazolium-based polymerized ionic liquid as a gene delivery vector. Chem Biol Drug Des 74(3):282–288

    Article  Google Scholar 

  • Zhang Y, Quek X-Y, Wu L, Guan Y, Hensen EJ (2013) Palladium nanoparticles entrapped in polymeric ionic liquid microgels as recyclable hydrogenation catalysts. J Mol Catal A 379:53–58

    Article  Google Scholar 

  • Zhao ZW, Guo ZP, Ding J, Wexler D, Ma ZF, Zhang DY, Liu HK (2006) Novel ionic liquid supported synthesis of platinum-based electrocatalysts on multiwalled carbon nanotubes. Electrochem Commun 8(2):245–250

    Article  Google Scholar 

  • Zhao Q, Zhang P, Antonietti M, Yuan J (2012) Poly(ionic liquid) complex with spontaneous micro-/mesoporosity: template-free synthesis and application as catalyst support. J Am Chem Soc 134(29):11852–11855

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Vijayakrishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manojkumar, K., Sivaramakrishna, A. & Vijayakrishna, K. A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids). J Nanopart Res 18, 103 (2016). https://doi.org/10.1007/s11051-016-3409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3409-y

Keywords

Navigation