Skip to main content
Log in

Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic oxide nanoparticles provide a fascinating tool for biological research and medicine, serving as contrast agents, magnetic carriers, and core materials of theranostic systems. Although the applications rely mostly on iron oxides, more complex oxides such as perovskite manganites may provide a much better magnetic performance. To assess the risk of their potential use, in vitro toxicity of manganite nanoparticles was thoroughly analysed and compared with another prospective system of Mn–Zn ferrite nanoparticles. Magnetic nanoparticles of La0.63Sr0.37MnO3 manganite were prepared by two distinct methods, namely the molten salt synthesis and the traditional sol–gel route, whereas nanoparticles of Mn0.61Zn0.42Fe1.97O4 ferrite, selected as a comparative material, were synthesized by a new procedure under hydrothermal conditions. Magnetic cores were coated with silica and, moreover, several samples of manganite nanoparticles with different thicknesses of silica shell were prepared. The size-fractionated and purified products were analysed using transmission electron microscopy, dynamic light scattering, measurement of the zeta-potential dependence on pH, IR spectroscopy, and SQUID magnetometry. The silica-coated products with accurately determined concentration by atomic absorption spectroscopy were subjected to a robust evaluation of their cytotoxicity by four different methods, including detailed analysis of the concentration dependence of toxicity, analysis of apoptosis, and experiments on three different cell lines. The results, comparing two manganese-containing systems, clearly indicated superior properties of the Mn–Zn ferrite, whose silica-coated nanoparticles show very limited toxic effects and thus constitute a promising material for bioapplications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Belozerova NM, Kichanov SE, Jirák Z, Kozlenko DP, Kačenka M, Kaman O, Lukin EV, Savenko BN (2015) High pressure effects on the crystal and magnetic structure of nanostructured manganites La0.63Sr0.37MnO3 and La0.72Sr0.28MnO3. J Alloy Compd 646:998–1003. doi:10.1016/j.jallcom.2015.06.154

    Article  Google Scholar 

  • Berková Z, Jirák D, Zacharovová K, Lukeš I, Kotková Z, Kotek J, Kačenka M, Kaman O, Řehoř I, Hájek M, Saudek F (2013) Gadolinium- and manganite-based contrast agents with fluorescent probes for both magnetic resonance and fluorescence imaging of pancreatic islets: a comparative study. ChemMedChem 8(4):614–621. doi:10.1002/cmdc.201200439

    Article  Google Scholar 

  • Chmaissem O, Dabrowski B, Kolesnik S, Mais J, Jorgensen JD, Short S (2003) Structural and magnetic phase diagrams of La1−xSrxMnO3 and Pr1−ySryMnO3. Phys Rev B 67:094431. doi:10.1103/PhysRevB.67.094431

    Article  Google Scholar 

  • Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334. doi:10.1039/c2cs15337h

    Article  Google Scholar 

  • Gözüak F, Köseoğlu Y, Baykal A, Kavas H (2009) Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321(14):2170–2177. doi:10.1016/j.jmmm.2009.01.008

    Article  Google Scholar 

  • Haghniaz R, Bhayani KR, Umrani RD, Paknikar KM (2013) Dextran stabilized lanthanum strontium manganese oxide nanoparticles for magnetic resonance imaging. RSC Adv 3(40):18489–18497. doi:10.1039/c3ra40836a

    Article  Google Scholar 

  • Havelek R, Siman P, Cmielova J, Stoklasova A, Vavrova J, Vinklarek J, Knizek J, Rezacova M (2012) Differences in vanadocene dichloride and cisplatin effect on MOLT-4 leukemia and human peripheral blood mononuclear cells. Med Chem 8(4):615–621. doi:10.2174/157340612801216364

    Article  Google Scholar 

  • Jang JT, Nah H, Lee JH, Moon SH, Kim MG, Cheon J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48(7):1234–1238. doi:10.1002/anie.200805149

    Article  Google Scholar 

  • Jirák Z, Hadová E, Kaman O, Knížek K, Maryško M, Pollert E, Dlouhá M, Vratislav S (2010) Ferromagnetism versus charge ordering in the Pr0.5Ca0.5MnO3 and La0.5Ca0.5MnO3 nanocrystals. Phys Rev B 81:024403. doi:10.1103/PhysRevB.81.024403

    Article  Google Scholar 

  • Jirák Z, Kačenka M, Kaman O, Maryško M, Belozerova N, Kichanov S, Kozlenko D (2015) Role of surface on magnetic properties of La1−xSrxMnO3+δ nanocrystallites. IEEE Trans Magn 51(11):1000204. doi:10.1109/TMAG.2015.2433267

    Article  Google Scholar 

  • Kačenka M, Kaman O, Kotek J, Falteisek L, Černý J, Jirák D, Herynek V, Zacharovová K, Berková Z, Jendelová P, Kupčík J, Pollert E, Veverka P, Lukeš I (2011) Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles. J Mater Chem 21(1):157–164. doi:10.1039/c0jm01258k

    Article  Google Scholar 

  • Kačenka M, Kaman O, Jirák Z, Maryško M, Žvátora P, Vratislas S, Lukeš I (2014) Magnetic properties of La1−xSrxMnO3 nanoparticles prepared in a molten salt. J Appl Phys 115(7):17B525. doi:10.1063/1.4867958

    Google Scholar 

  • Kačenka M, Kaman O, Jirák Z, Maryško M, Veverka P, Veverka M, Vratislav S (2015a) The magnetic and neutron diffraction studies of La1−xSrxMnO3 nanoparticles prepared via molten salt synthesis. J Solid State Chem 221:364–372. doi:10.1016/j.jssc.2014.10.024

    Article  Google Scholar 

  • Kačenka M, Kaman O, Kikerlová S, Pavlů B, Jirák Z, Jirák D, Herynek V, Černý J, Chaput F, Laurent S, Lukeš I (2015b) Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell. J Colloid Interface Sci 447:97–106. doi:10.1016/j.jcis.2015.01.071

    Article  Google Scholar 

  • Kaman O, Pollert E, Veverka P, Veverka M, Hadová E, Knížek K, Maryško M, Kašpar P, Klementová M, Grunwaldová V, Vasseur S, Epherre R, Mornet S, Goglio G, Duguet E (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology 20(27):275610. doi:10.1088/0957-4484/20/27/275610

    Article  Google Scholar 

  • Kaman O, Veverka P, Jirák Z, Maryško M, Knížek K, Veverka M, Kašpar P, Burian M, Šepelák V, Pollert E (2011) The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles. J Nanopart Res 13(3):1237–1252. doi:10.1007/s11051-010-0117-x

    Article  Google Scholar 

  • Kato H, Nakamura A, Noda N (2014) Determination of size distribution of silica nanoparticles: a comparison of scanning electron microscopy, dynamic light scattering, and flow field-flow fractionation with multiangle light scattering methods. Mater Express 4(2):144–152. doi:10.1166/mex.2014.1150

    Article  Google Scholar 

  • Kondo T, Mori K, Hachisu M, Yamazaki T, Okamoto D, Watanabe M, Gonda K, Tada H, Hamada Y, Takano M, Ohuchi N, Ichiyanagi Y (2015) Alternating current magnetic susceptibility and heat dissipation by Mn1−xZnxFe2O4 nanoparticles for hyperthermia treatment. J Appl Phys 117(17):17D157. doi:10.1063/1.4919327

    Article  Google Scholar 

  • Kulkarni VM, Bodas D, Paknikar KM (2015) Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Adv 5(74):60254–60263. doi:10.1039/c5ra02731d

    Article  Google Scholar 

  • Kuznetsov AA, Shlyakhtin OA, Brusentsov NA, Kuznetsov OA (2002) “Smart” mediators for self-controlled inductive heating. Eur Cells Mater 3(Suppl. 2):75–77

    Google Scholar 

  • Li KB, Cheng RS, Wang SG, Zhang YH (1998) Infrared transmittance spectra of the granular perovskite La2/3Ca1/3MnO3. J Phys: Condens Matter 10(19):4315–4322. doi:10.1088/0953-8984/10/19/019

    Google Scholar 

  • Murashkevich A, Lavitskaya A, Barannikova T, Zharskii I (2008) Infrared absorption spectra and structure of TiO2-SiO2 composites. J Appl Spectrosc 75(5):730–734. doi:10.1007/s10812-008-9097-3

    Article  Google Scholar 

  • Patwardhan SV, Emami FS, Berry RJ, Jones SE, Naik RR, Deschaume O, Heinz H, Perry CC (2012) Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective Peptide adsorption. J Am Chem Soc 134(14):6244–6256. doi:10.1021/ja211307u

    Article  Google Scholar 

  • Pollert E, Veverka P, Veverka M, Kaman O, Závěta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem 37(1):1–14. doi:10.1016/j.progsolidstchem.2009.02.001

    Article  Google Scholar 

  • Primc D, Makovec D (2015) Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite. Nanoscale 7(6):2688–2697. doi:10.1039/c4nr05854b

    Article  Google Scholar 

  • Rath C, Anand S, Das RP, Sahu KK, Kulkarni SD, Date SK, Mishra NC (2002) Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite. J Appl Phys 91(4):2211–2215. doi:10.1063/1.1432474

    Article  Google Scholar 

  • Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6(5):446–465. doi:10.1016/j.nantod.2011.08.001

    Article  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26(1):62–69. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  • Trachtová S, Kaman O, Španová A, Veverka P, Pollert E, Rittich B (2011) Silica-coated La0.75Sr0.25MnO3 nanoparticles for magnetically driven DNA isolation. J Sep Sci 34(21):3077–3082. doi:10.1002/jssc.201100442

    Article  Google Scholar 

  • Veverka M, Jirák Z, Kaman O, Knížek K, Maryško M, Pollert E, Závěta K, Lančok A, Dlouhá M, Vratislav S (2011) Distribution of cations in nanosize and bulk Co–Zn ferrites. Nanotechnology 22(34):345701. doi:10.1088/0957-4484/22/34/345701

    Article  Google Scholar 

  • Veverka P, Kaman O, Kačenka M, Herynek V, Veverka M, Šantavá E, Lukeš I, Jirák Z (2015) Magnetic La1−xSrxMnO3 nanoparticles as contrast agents for MRI: the parameters affecting 1H transverse relaxation. J Nanopart Res 17(1):33. doi:10.1007/s11051-014-2848-6

    Article  Google Scholar 

  • Wang J, Zeng C, Peng ZM, Chen QW (2004) Synthesis and magnetic properties of Zn1−xMnxFe2O4 nanoparticles. Phys B 349(1–4):124–128. doi:10.1016/j.physb.2004.02.014

    Article  Google Scholar 

  • Žvátora P, Veverka M, Veverka P, Knížek K, Závěta K, Pollert E, Král V, Goglio G, Duguet E, Kaman O (2013) Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites. J Solid State Chem 204:373–379. doi:10.1016/j.jssc.2013.06.006

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Grant Agency of the Czech Republic through the project 15-10088S. The evaluation of the size distribution of particles by means of TEM was supported by the project P302/12/G157 from the same agency. Further, we would like to thank also to our colleagues Dr. Karel Závěta and Dr. Zdeněk Jirák for careful reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Kaman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaman, O., Dědourková, T., Koktan, J. et al. Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity. J Nanopart Res 18, 100 (2016). https://doi.org/10.1007/s11051-016-3402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3402-5

Keywords

Navigation