Skip to main content

Advertisement

Log in

High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Developing efficient electrode material is essential to keep pace with the demand for high energy density together with high power density and long cycle life in next generation energy storage devices. Herein, we report the electrochemical properties of hydrothermally synthesized CoO nanofibers of diameter 30–80 nm assembled in a nest-like morphology which showed a very high reversible lithium storage capacity of 2000 mA h g−1 after 600 cycles at 0.1 mA cm−2 as lithium-ion battery anode. Systematic investigation by ex situ transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and impedance spectroscopy at different cycling stages indicated that the extraordinary performance could be related to an enhancement in the Co2+↔Cox+ (2 < x ≤ 3) redox process in addition to the commonly believed structural and morphological evolution during cycling favoring generation of large number of accessible active sites for lithium insertion. Further, when examined as a supercapacitor electrode in 1.0 M KOH, a capacitance of 1167 F g−1 is achieved from these 1D CoO nanofibers after 10,000 charge discharge cycles at a high current density of 5 A g−1 demonstrating good application potential.

Graphical Abstract

Nest-like CoO nanofibers showed a reversible lithium storage capacity of 2000 mA h g−1 after 600 cycles as LIB anode and a capacitance of 1167 F g−1 after 10,000 cycles as electrochemical supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armand M, Tarascon JM (2008) Building better batteries. Nature 45:652–657

    Article  Google Scholar 

  • Ban CM, Wu ZC, Gillaspie DT, Chen L, Yan YF, Blackburn JL, Dillon AC (2010) Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-ion anode. Adv Mater 22:E145

    Article  Google Scholar 

  • Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E179

    Article  Google Scholar 

  • Dedryvère R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16:1056–1061

    Article  Google Scholar 

  • Deng W, Sun Y, Su Q, Xie E, Lan W (2014) Porous CoO nanobundles composited with 3D graphene foams for supercapacitors electrodes. Mater Lett 137:124

    Article  Google Scholar 

  • Do JS, Weng CH (2005) Preparation and characterization of CoO used as anodic material of lithium battery. J Power Sources 146:482–486

    Article  Google Scholar 

  • Dolle M, Poizot P, Dupont L, Tarascon JM (2002) Experimental evidence for electrolyte involvement in the reversible reactivity of CoO toward compounds at low potential. Electrochem Solid State Lett 5:A18–A21

    Article  Google Scholar 

  • Dong XC, Xu H, Wang XW, Huang YX, Park MBC, Zhang H, Wang LH, Huang W, Chen P (2012) 3D Graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206

    Article  Google Scholar 

  • Epling WS, Hoflund Gar B, Weaver GB, Tsubota JF, Haruta M (1996) Surface characterization study of Au/α-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts. J Phys Chem 100:929–9934

    Article  Google Scholar 

  • Gao Z, Song N, Li X (2015) Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors. J Mater Chem A 3:14833

    Article  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  • Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904

    Article  Google Scholar 

  • Guan H, Wang X, Li H, Zhi C, Zhai T, Bando Y, Golberg D (2012) CoO octahedral nanocages for high-performance lithium ion batteries. Chem Commun 48:4878–4880

    Article  Google Scholar 

  • Hao W, Chen S, Cai Y, Zhang L, Li Z, Zhang S (2014a) Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J Mater Chem A 2:13801–13804

    Article  Google Scholar 

  • Hao Q, Wang J, Xu C (2014b) Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries. J Mater Chem A 2:87

    Article  Google Scholar 

  • Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Improved electrode performance of porous LiFe-PO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19:1963–1966

    Article  Google Scholar 

  • Huang X, Wang R, Xu D, Wang Z, Wang H, Xu J, Wu Z, Liu Q, Zhang Y, Zhang X (2013) Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Funct Mater 23:4345–4353

    Article  Google Scholar 

  • Jung YJ, Singh N, Choi KS (2009) Cathodic deposition of polypyrrole enabling the one-step assembly of metal-polymer hybrid electrodes. Angew Chem Int Ed 48:8331

    Article  Google Scholar 

  • Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–634

    Article  Google Scholar 

  • Liang ZJ, Susha A, Caruso F (2003) Gold nanoparticle-based core–shell and hollow spheres and ordered assemblies thereof. Chem Mater 15:3176

    Article  Google Scholar 

  • Liu HC, Yen SK (2007) Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries. J Power Sources 166:478–484

    Article  Google Scholar 

  • Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20:258

    Article  Google Scholar 

  • Lou XW, Li CM, Archer LA (2009) Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Adv Mater 21:2536

    Article  Google Scholar 

  • Meduri P, Pendyala C, Kumar V, Sumanasekera GU, Sunkara MK (2009) Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett 9:612

    Article  Google Scholar 

  • Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Article  Google Scholar 

  • Narayan RV, Kanniah V, Dhathathreyan A (2006) Tuning size and catalytic activity of nano-clusters of cobalt oxide. J Chem Sci 118:179–184

    Article  Google Scholar 

  • Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Liu S, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074

    Article  Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  Google Scholar 

  • Qi Y, Zhang H, Du N, Yang D (2013) Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J Mater Chem A 1:2337–2342

    Article  Google Scholar 

  • Qu QT, Fu LJ, Zhan XY, Samuelis D, Maier J, Li L, Tian S, Li ZH, Wu YP (2011) Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ Sci 4:3985

    Article  Google Scholar 

  • Rao CNR, Matte HSSR, Voggu R, Govindaraj A (2012) Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 41:5089–5120

    Article  Google Scholar 

  • Reddy MV, Rao GVS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364

    Article  Google Scholar 

  • Sun L, Li H, Ren L, Hu C (2009) Synthesis of Co3O4 nanostructures using a solvothermal approach. Solid state Sci 11:108–112

    Article  Google Scholar 

  • Sun Y, Hu X, Luo W, Huang Y (2012a) Ultrathin CoO/graphene hybrid nanosheets: a highly stable anode material for lithium-ion batteries. J Phys Chem C 116:20794

    Article  Google Scholar 

  • Sun Y, Hu X, Luo W, Huang Y (2012b) Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. J Mater Chem 22:13826

    Article  Google Scholar 

  • Tyuliev G, Angelov S (1988) The nature of excess oxygen in Co3O4+ε . Appl Surf Sci 32:381–391

    Article  Google Scholar 

  • Walton RI (2002) Subcritical solvothermal synthesis of condensed inorganic materials. Chem Soc Rev 31:230–238

    Article  Google Scholar 

  • Wang H, Qing C, Guo J, Aref AA, Sun D, Wang B, Tang Y (2014) Highly conductive carbon–CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. J Mater Chem A 2:11776

    Article  Google Scholar 

  • Wu FD, Wang Y (2011) Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. J Mater Chem 21:6636

    Article  Google Scholar 

  • Xiong S, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH) 0.11 H2O and their lithium-storage properties. Adv Funct Mater 22:861

    Article  Google Scholar 

  • Xue XY, Yuan S, Xing LL, Chen ZH, He B, Chen YJ (2011) Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes. Chem Commun 47:4718

    Article  Google Scholar 

  • Yang M, Lv F, Wang Z, Xiong Y, Li M, Wang W, Zhang L, Wu S, Liu H, Gu Y, Lu Z (2015) Binder-free hydrogenated NiO–CoO hybrid electrodes for high performance supercapacitors. RSC Adv 5:31725

    Article  Google Scholar 

  • Ye JF, Liu W, Cai JG, Chen S, Zhao XW, Zhou HH, Qi LM (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940

    Article  Google Scholar 

  • Yu Y, Chen CH, Shui JL, Xie S (2005) Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angew Chem Int Ed 44:7085

    Article  Google Scholar 

  • Zhang L, Hu P, Zhao X, Tian R, Zoub R, Xia D (2011) Controllable synthesis of core–shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. J Mater Chem 21:18279

    Article  Google Scholar 

  • Zhang M, Uchaker E, Hu S, Zhang Q, Wang T, Cao G, Li J (2013) CoO–carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale 5:12342

    Article  Google Scholar 

  • Zheng C, Cao C, Ali Z, Hou J (2014) Enhanced electrochemical performance of ball milled CoO for supercapacitor applications. J Mater Chem A 2:16467

    Article  Google Scholar 

  • Zhou GM, Wang DW, Fi L, Zhang LL, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306

    Article  Google Scholar 

  • Zhou G, Wang D, Yin L, Li N, Li F, Cheng H (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6:3214

    Article  Google Scholar 

  • Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078

    Article  Google Scholar 

  • Zhu J, Sharma YK, Zeng Z, Zhang X, Srinivasan M, Mhaisalkar S, Zhang H, Hng HH, Yan Q (2011) Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J Phys Chem C 115:8400

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Director, CSIR-CGCRI for kind permission to publish this work. Financial support from CSIR, India via TAPSUN NWP0056 project is gratefully acknowledged. S Maiti thanks CSIR India for a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourindra Mahanty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, A., Maiti, S., Sreemany, M. et al. High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life. J Nanopart Res 18, 93 (2016). https://doi.org/10.1007/s11051-016-3401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3401-6

Keywords

Navigation