Skip to main content
Log in

Synthesis of Titanium-doped MgO heteronanostructures with tunable band gap

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ti x Mg1−x O heteronanostructures (x = 0.02 to 0.50) have been synthesized by a novel thermal decomposition route, and the effect of concentration of titanium and calcination temperature on optical properties of the heteronanostructures has been investigated. Phase analysis using powder X-ray diffraction demonstrates the formation of mixture of MgO and MgTiO3 when x = 0.02 to 0.20 and pure MgTiO3 when x = 0.33 to 0.50. Scanning electron microscopy studies show that the Ti x Mg1−x O samples with x = 0.02 to 0.20 consist of particles with a mixture of flower- and rod-like morphology, whereas the Ti x Mg1-x O samples with x = 0.33 to 0.50 possess rod-like morphology. Transmission electron microscopy studies show that the flowers are in turn formed by assembly of nanoparticles and the hollow rods are formed by aggregation of dumbbell-shaped nanoparticles. Diffuse reflectance spectroscopic studies show that band gap of the Ti x Mg1−x O heteronanostructures can be tuned from 3.2 to 4.2 eV by varying the concentration of titanium and the calcination temperature. Photoluminescence spectra show emission bands in visible and near-infrared regions due to defects present in the Ti x Mg1−x O heteronanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bain S, Ma Z, Cui Z, Zhang L, Niu F, Song W (2008) Synthesis of micrometer-sized nanostructured magnesium oxide and its high catalytic activity in the Claisen-Schmidt condensation reaction. J Phys Chem C 112:11340–11344. doi:10.1021/jp802863j

    Article  Google Scholar 

  • Bandara J, Hadapangoda CC, Jayasekera WG (2004) TiO2/MgO composite photocatalyst: the role of MgO in photoinduced charge carrier separation. Appl Catal B 50:83–88. doi:10.1016/j.apcatb.2003.12.021

    Article  Google Scholar 

  • Bandara J, Kuruppu SS, Pradeep UW (2006) The promoting effect of MgO layer in sensitized photodegradation of colorants on TiO2/MgO composite oxide. Colloids Surf A 276:197–202. doi:10.1016/j.colsurfa.2005.10.059

    Article  Google Scholar 

  • Bayal N, Jeevanandam P (2014) Synthesis of TiO2–MgO mixed metal oxide nanoparticles via a sol gel method and studies on their optical properties. Ceram Int 40:15463–15477. doi:10.1016/j.ceramint.2014.06.122

    Article  Google Scholar 

  • Bian S, Baltrusaitis J, Galhotra P, Grassian VH (2010) A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. J Mater Chem 20:8705–8710. doi:10.1039/c0jm01261k

    Article  Google Scholar 

  • Bokhimi X, Boldu JL, Munoz E Novaro O (1999) Structure and composition of the nanocrystalline phases in a MgO-TiO2 system prepared via sol-gel technique. Chem Mater 11:2716–2721. doi:10.1021/cm9900812

    Article  Google Scholar 

  • Cao AM, Hu JS, Liang HP, Song WG, Wan LJ, He XL, Gao XG, Xia SH (2006) Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. J Phys Chem B 110:15858–15863. doi:10.1021/jp0632438

    Article  Google Scholar 

  • Ceylantekin R, Aksel C (2012) Improvements on the mechanical properties and thermal shock behaviours of MgO-spinel composite refractories by ZrO2 incorporation. Ceram Int 38:995–1002. doi:10.1016/j.ceramint.2011.08.022

    Article  Google Scholar 

  • Chakroune N, Viau G, Ammar S, Jouini N, Gredin P, Vaulaya MJ, Fieveta F (2005) Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide: CoII(C2H4O2). New J Chem 29:355–361. doi:10.1039/b411117f

    Article  Google Scholar 

  • Cheng G, Akhtar MS, Yang OB, Stadlera FJ (2013) Structure modification of anatase TiO2 nanomaterials-based photoanodes for efficient dye-sensitized solar cells. Electrochim Acta 113:527–535. doi:10.1016/j.electacta.2013.09.085

    Article  Google Scholar 

  • Dadvar S, Tavanai H, Morshed M, Ghiaci M (2013) A study on the kinetics of 2-chloroethyl ethyl sulfide adsorption onto nanocomposite activated carbon nanofibers containing metal oxide nanoparticles. Sep Purif Technol 114:24–30. doi:10.1016/j.seppur.2013.04.019

    Article  Google Scholar 

  • Devaraja PB, Avadhani DN, Prashantha SC, Nagabhushana H, Sharma SC, Nagabhushana BM, Nagaswarupa HP (2014) Synthesis, structural and luminescence studies of magnesium oxide nanopowder. Spectrochim Acta Part A 118:847–851. doi:10.1016/j.saa.2013.08.050

    Article  Google Scholar 

  • Dong W et al (2011) General approach to well-defined perovskite MTiO3 (M = Ba, Sr, Ca, and Mg) nanostructures. J Phys Chem C 115:3918–3925. doi:10.1021/jp110660v

    Article  Google Scholar 

  • Ferri EAV et al (2009) Photoluminescence behavior in MgTiO3 powders with vacancy/distorted clusters and octahedral tilting. Mater Chem Phys 117:192–198. doi:10.1016/j.matchemphys.2009.05.042

    Article  Google Scholar 

  • Fujiokaa Y, Frantti J, Nieminen RM (2012) Ferromagnetism in MgTiO3–Ti2O3 solid solutions. Mater Sci Forum 700:23–27. doi:10.4028/www.scientific.net/MSF.700.23

    Article  Google Scholar 

  • FujiokaY Frantti J, Nieminen RM (2011) Itinerant-electron ferromagnetism in a titanium-rich magnesium titanate ilmenite solid solution. J Phys Chem C 115:1457–1463. doi:10.1021/jp107698j

    Article  Google Scholar 

  • Gao L, Zhai J, Yao X (2008) MgTiO3 and Ba0.60Sr0.40Mg0.15Ti0.85O3 composite thin films with promising dielectric properties for tunable applications. J Am Ceram Soc 91:3109–3112. doi:10.1111/j.1551-2916.2008.02569.x

    Article  Google Scholar 

  • Gao DZ, Watkins MB, Shluger AL (2012) Transient mobility mechanisms of deposited metal atoms on insulating surfaces: Pd on MgO (100). J Phys Chem C 116:14471–14479. doi:10.1021/jp303951y

    Article  Google Scholar 

  • Ho YD, Huang CL (2013) Strong near-infrared photoluminescence emission of (003)-oriented MgTiO3 thin films. J Am Ceram Soc 96:2065–2068. doi:10.1111/jace.12439

    Article  Google Scholar 

  • Ho YD, Su CH, Huang CL (2014) Intense red photoluminescence emission of sol–gel-derived nanocrystalline Mg2TiO4 thin films. J Am Ceram Soc 97:358–360. doi:10.1111/jace.12775

    Article  Google Scholar 

  • Huang CL, Liu SS, Chen SH (2011) The effect of non-stoichiometry on the microstructure and microwave dielectric properties of the Mg1+x TiO3+x ceramics. J Alloys Compd 509:9702–9707. doi:10.1016/j.jallcom.2011.07.092

    Article  Google Scholar 

  • Jiang X, Herricks T, Xia Y (2003) Monodispersed spherical colloids of titania: synthesis, characterization and crystallization. Adv Mater 15:1205–1209. doi:10.1002/adma.200305105

    Article  Google Scholar 

  • Jiang X, Wang Y, Herricks T, Xia Y (2004) Ethylene glycol-mediated synthesis of metal oxide nanowires. J Mater Chem 14:695–703. doi:10.1039/b313938g

    Article  Google Scholar 

  • Jiang Y, Wang K, Guo X, Wei X, Wang J, Chen J (2012) Mesoporous titania rods as an anode material for high performance lithium-ion batteries. J Power Sources 214:298–302. doi:10.1016/j.jpowsour.2012.04.091

    Article  Google Scholar 

  • Jung HS, Lee JK, Nastasi M (2005) Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir 21:10332–10335. doi:10.1021/la051807d

    Article  Google Scholar 

  • Lee JW, Ko JH (2014) Defect states of transition metal-doped MgO for secondary electron emission of plasma display panel. J Inf Disp 15:157–161. doi:10.1080/15980316.2014.955140

    Article  Google Scholar 

  • Li S, Shena Q, Zong J, Yang H (2010) Simple preparation of sub-micron mesoporous TiO2 spheres consisting of anatase nanocrystals. J Alloys Compd 508:99–105. doi:10.1016/j.jallcom.2010.04.246

    Article  Google Scholar 

  • Li L, Yang X, Gao J, Zhao J, Hagfeldt A, Sun L (2011) Electric characteristics of MgO-doped TiO2 nanocrystalline film in dye-sensitized solar cells. Adv Mater Res 236:2106–2109. doi:10.4028/www.scientific.net/AMR.236-238.2106

    Article  Google Scholar 

  • Li C, Li Q, Chen L, Wang T (2012) A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries. ACS Appl Mater Interfaces 4:1233–1238. doi:10.1021/am2018145

    Article  Google Scholar 

  • Liu M, Snapp NL, Park H (2011) Water photolysis with a cross-linked titanium dioxide nanowire anode. Chem Sci 2:80–87. doi:10.1039/c0sc00321b

    Article  Google Scholar 

  • Mohammadi MR, Fray DJ (2012) Tailoring of morphology and crystal structure of nanomaterials in MgO–TiO2 system by controlling Mg:Ti molar ratio. J Sol-Gel Sci Technol 64:135–144. doi:10.1007/s10971-012-2839-y

    Article  Google Scholar 

  • Pfaff G (1994) Peroxide route for synthesis of magnesium titanate powders of various compositions. Ceram Int 20:111–116. doi:10.1016/0272-8842(94)90067-1

    Article  Google Scholar 

  • Pol VG, Langzam Y, Zaban A (2007) Application of microwave superheating for the synthesis of TiO2 rods. Langmuir 23:11211–11216. doi:10.1021/la7020116

    Article  Google Scholar 

  • Qu Y, Zhou W, Pan K, Tian C, Ren Z, Dong Y, Fu H (2010) Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: an effective candidate for dye-sensitized solar-cells. Phys Chem Chem Phys 12:9205–9212. doi:10.1039/b922658c

    Article  Google Scholar 

  • Qu Y et al (2012) Facile preparation of porous NiTiO3 nanorods with enhanced visible-light-driven photocatalytic performance. J Mater Chem 22:16471–16476. doi:10.1039/c2jm32044d

    Article  Google Scholar 

  • Qu Y et al (2013) A novel phase-mixed MgTiO3–MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem Commun 49:8510–8512. doi:10.1039/c3cc43435d

    Article  Google Scholar 

  • Rao Y, Wang W, Tan F, Cai Y, Lu J, Qiao X (2013) Influence of different ions doping on the antibacterial properties of MgO nanopowders. Appl Surf Sci 284:726–731. doi:10.1016/j.apsusc.2013.08.001

    Article  Google Scholar 

  • Shrestha KM, Sorensen CM, Klabunde KJ (2013) MgO–TiO2 mixed oxide nanoparticles: comparison of flame synthesis versus aerogel method; characterization, and photocatalytic activities. J Mater Res 28:431–439. doi:10.1557/jmr.2012.288

    Article  Google Scholar 

  • Subramania A, Kumar GV, Priya ARS, Vasudevan T (2007) Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires. Nanotechnology. doi:10.1088/0957-4484/18/22/225601

    Google Scholar 

  • Tang B, Li H, Fan P, Yu S, Zhang S (2014) The effect of Mg:Ti ratio on the phase composition and microwave dielectric properties of MgTiO3 ceramics prepared by one synthetic process. J Mater Sci Mater Electron 25:2482–2486. doi:10.1007/s10854-014-1899-x

    Article  Google Scholar 

  • Tian P, Han X, Ning G, Fang H, Ye J, Gong W, Lin Y (2013) Synthesis of porous hierarchical MgO and its superb adsorption properties. ACS Appl Mater Interfaces 5:12411–12418. doi:10.1021/am403352y

    Article  Google Scholar 

  • Wang D, Yu D, Chen Y, Kumada N, Kinomura N, Takano M (2004) Photocatalysis property of needle-like TiO2 prepared from a novel titanium glycolate precursor. Solid State Ionics 172:101–104. doi:10.1016/j.ssi.2004.04.028

    Article  Google Scholar 

  • Wang W, Qiao X, Chen J, Tan F (2008) Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method. J Alloys Compd 461:542–546. doi:10.1016/j.jallcom.2007.07.046

    Article  Google Scholar 

  • Wang W, Qiao X, Chen J, Tan F, Li H (2009) Influence of titanium doping on the structure and morphology of MgO prepared by coprecipitation method. Mater Charact 60:858–862. doi:10.1016/j.matchar.2009.02.002

    Article  Google Scholar 

  • Wang X, Cai J, Zhang Y, Li L, Jiang L, Wang C (2015) Heavy metal sorption properties of magnesium titanate mesoporous nanorods. J Mater Chem A 3:11796–11800. doi:10.1039/c5ta02034d

    Article  Google Scholar 

  • Xue X, Yu H, Xu G (2013) Phase composition and microwave dielectric properties of Mg-excess MgTiO3 ceramics. J Mater Sci Mater Electron 24:1287–1291. doi:10.1007/s10854-012-0921-4

    Article  Google Scholar 

  • Yadav MK, Kothari AV, Gupta VK (2011) Preparation and characterization of bi- and trimetallic titanium based oxides. Dyes Pigm 89:149–154. doi:10.1016/j.dyepig.2010.10.004

    Article  Google Scholar 

  • Yang KC, Shen P (2005) On the precipitation of coherent spinel nanoparticles in Ti-doped MgO. J Solid State Chem 178:661–670. doi:10.1016/j.jssc.2004.12.019

    Article  Google Scholar 

  • Yann LD, Gilles A, Mihai S, Rouessac V, Tingry S, Barboiu M (2013) Dynamic constitutional electrodes toward functional fullerene wires. Chem Commun 49:3667–3669. doi:10.1039/c3cc41450g

    Article  Google Scholar 

  • Yu HK, Eun TH, Yi GR, Yang SM (2007) Multi-faceted titanium glycolate and titania structures from room-temperature polyol process. J Colloid Interface Sci 316:175–182. doi:10.1016/j.jcis.2007.07.043

    Article  Google Scholar 

  • Zhang Y et al (2014) Mesoporous titanium oxide microspheres for high-efficient cadmium sulfide quantum dot-sensitized solar cell and investigation of its photovoltaic behavior. Electrochim Acta 150:167–172. doi:10.1016/j.electacta.2014.10.101

    Article  Google Scholar 

Download references

Acknowledgments

P. J. gratefully acknowledges the financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi (Project No. 01/(2726)13/EMR-II). The award of Research Fellowship to Ms. Urvashi Sharma by the University Grants Commission is gratefully acknowledged. The authors are thankful to the Institute Instrumentation Centre, Indian Institute of Technology Roorkee, for providing the facilities. Thanks are also due to Dr. S. Murugavel, Department of Physics and Astrophysics, University of Delhi, for his help with the DRS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeevanandam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, U., Jeevanandam, P. Synthesis of Titanium-doped MgO heteronanostructures with tunable band gap. J Nanopart Res 18, 83 (2016). https://doi.org/10.1007/s11051-016-3396-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3396-z

Keywords

Navigation