Skip to main content
Log in

Synthesis and characterization of nanostructured iron compounds prepared from the decomposition of iron pentacarbonyl dispersed into carbon materials with varying porosities

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This work describes the production and characterization of carbon-iron nanocomposites obtained from the decomposition of iron pentacarbonyl (Fe(CO)5) mixed with different carbon materials: a high surface area activated carbon (AC), powdered graphite (G), milled graphite (MG), and carbon black (CB). The nanocomposites were prepared either under argon or in ambient atmosphere, with a fixed ratio of Fe(CO)5 (4.0 mL) to carbon precursor (2.0 g). The images of scanning electron microscopy and the analysis of textural properties indicated the presence of nanostructured Fe compounds homogeneously dispersed into the different classes of pores of the carbon matrices. The elemental Fe content was always larger for samples prepared in ambient atmosphere, reaching values in the range of 20–32 wt%. On the other hand, samples prepared under argon showed reduced Fe content, with values in the range 5–10 wt% for samples prepared from precursors with low surface area (G, MG, and CB) and a much higher value (~19 wt%) for samples prepared from the precursor of high surface area (AC). Mössbauer spectroscopy and X-ray diffractometry showed that the nanoparticles were mostly composed of iron oxides in the case of the samples prepared in oxygen-rich ambient atmosphere and also for the AC-derived nanocomposite prepared under argon, which is consistent with the large oxygen content of this precursor. For the other precursors, with reduced or no oxygen content, metallic iron and iron carbides were found to be the dominant phases in samples prepared under oxygen-free atmosphere. The samples prepared in ambient atmosphere and the AC-derived sample prepared under argon exhibited superparamagnetic behavior at room temperature, as revealed by temperature-dependent magnetization curves and Mössbauer spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandrescu R, Morjan I, Tomescu A, Simion CE, Scarisoreanu M, Birjega R, Fleaca C, Gavrila L, Soare I, Dumitrache F et al (2010) Direct production of a novel iron-based nanocomposite from the laser pyrolysis of Fe(CO)5/MMA mixtures: structural and sensing properties. J Nanomater 2010:1

    Article  Google Scholar 

  • Allia P, Barrera G, Bonelli B, Freyria FS, Tiberto P (2013) Magnetic properties of pure and eu-doped hematite nanoparticles. J Nanoparticle Res 15(12):1–12

    Google Scholar 

  • Antisari MV, Montone A, Jovic N, Piscopiello E, Alvani C, Pilloni L (2006) Low energy pure shear milling: a method for the preparation of graphite nano-sheets. Scripta Mater 55(11):1047–1050

    Article  Google Scholar 

  • Bedanta S, Kleemann W (2009) Supermagnetism. J Phys D Appl Phys 42(1):013001

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  Google Scholar 

  • Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  Google Scholar 

  • Cheng X, Wu B, Yang Y, Li Y (2011) Synthesis of iron nanoparticles in water-in-oil microemulsions for liquid-phase fischer-tropsch synthesis in polyethylene glycol. Catal Commun 12(6):431–435

    Article  Google Scholar 

  • Cunha AG, Freitas JCC, Cipriano DF, Emmerich FG (2012) Solid-state NMR study of carbon blacks obtained by plasma pyrolysis of natural gas extended abstract. In CARBON 2012—The annual world conference on carbon, Krakow, Poland, ID 813

  • Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–818

    Article  Google Scholar 

  • Donnet JB (1993) Carbon black: science and technology. CRC Press, Boca Raton

    Google Scholar 

  • Galembeck F, Santos ÁCM, Schumacher HC, Rippel MM, Rosseto R (2007) Chemical industry: recent developments, problems and opportunities. Quim Nova 30(6):1413–1419

    Article  Google Scholar 

  • Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1(1):1–19

    Article  Google Scholar 

  • Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltda, London

    Book  Google Scholar 

  • Guimarães AP (1998) Magnetism and magnetic resonance in solids. Wiley, New York

    Google Scholar 

  • Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45(13):4047–4055

    Article  Google Scholar 

  • Hosny NM (2014) Single crystalline Co3O4: synthesis and optical properties. Mater Chem Phys 144(3):247–251

    Article  Google Scholar 

  • Hosny NM, Al-Hussaini AS, Nowesser N, Zoromba MS (2015) Polyanthranilic acid. J Therm Anal Calorimet, 1–7

  • Hosny NM, Nowesser N, Al-Hussaini A, Zoromba MS (2016a) Doped copolymer of polyanthranilic acid and o-aminophenol (AA-co-OAP): synthesis, spectral characterization and the use of the doped copolymer as precursor of α-Fe2O3 nanoparticles. J Mol Struct 1106:479–484

    Article  Google Scholar 

  • Hosny NM, Nowesser N, Al Hussaini A, Zoromba S (2016b) Solid state synthesis of hematite nanoparticles from doped poly o-aminophenol (POAP). J Inorg Organomet Polym Mater 26(1):41–47

    Article  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  Google Scholar 

  • Jäger C, Mutschke H, Huisken F, Alexandrescu R, Morjan I, Dumitrache F, Barjega R, Soare I, David B, Schneeweiss O (2006) Iron-carbon nanoparticles prepared by CO2 laser pyrolysis of toluene and iron pentacarbonyl. Appl Phys A 85(1):53–62

    Article  Google Scholar 

  • Jullok N, Van Hooghten R, Luis P, Volodin A, Van Haesendonck C, Vermant J, Van der Bruggen B (2016) Effect of silica nanoparticles in mixed matrix membranes for pervaporation dehydration of acetic acid aqueous solution: Plant-inspired dewatering systems. J Clean Prod 112:4879–4889

    Article  Google Scholar 

  • Karr C (1978) Analytical methods for coal and coal products, vol 2. Academic Press, San Francisco

    Google Scholar 

  • Kharisov BI, Dias HR, Kharissova OV, Jiménez-Pérez VM, Perez BO, Flores BM (2012) Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advan 2(25):9325–9358

    Article  Google Scholar 

  • Klabunde KJ, Richards RM (2009) Nanoscale materials in chemistry. Wiley, Chichester

    Book  Google Scholar 

  • Knieke C, Berger A, Voigt M, Taylor RNK, Röhrl J, Peukert W (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48(11):3196–3204

    Article  Google Scholar 

  • Koch CC (2006) Nanostructured materials: processing, properties and applications. William Andrew, New York

    Google Scholar 

  • Lai Y, Rutigliano MN, Veser G (2015) Controlled embedding of metal oxide nanoparticles in ZSM-5 zeolites through preencapsulation and timed release. Langmuir 31(38):10562–10572

    Article  Google Scholar 

  • Lu A-H, Salabas EE, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  Google Scholar 

  • Luo L, Dai C, Zhang A, Wang J, Liu M, Song C, Guo X (2015) Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Adv 5(37):29509–29512

    Article  Google Scholar 

  • Marsh H, Reinoso FR (2006) Activated carbon. Elsevier, Amsterdam

    Google Scholar 

  • Minchev C, Huwe H, Tsoncheva T, Paneva D, Dimitrov M, Mitov I, Fröba M (2005) Iron oxide modified mesoporous carbons: physicochemical and catalytic study. Microporous Mesoporous Mater 81(1):333–341

    Article  Google Scholar 

  • Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2(8):127--146

  • Moussa S, Atkinson G, El-Shall MS (2013) Laser-assisted synthesis of magnetic Fe/Fe2O3 core: carbon-shell nanoparticles in organic solvents. J Nanoparticle Res 15(3):1–10

    Google Scholar 

  • Oliveira DQL, Oliveira LCA, Murad E, Fabris JD, Silva AC, de Menezes LM (2010) Niobian iron oxides as heterogeneous fenton catalysts for environmental remediation. Hyperfine Interact 195(13):27–34

    Article  Google Scholar 

  • Orolínová Z, Mockovčiaková A (2009) Structural study of bentonite/iron oxide composites. Mater Chem Phys 114(2):956–961

    Article  Google Scholar 

  • Papusoi C Jr (1999) The particle interaction effects in the field-cooled and zero-field-cooled magnetization processes. J Magn Magn Mater 195(3):708–732

    Article  Google Scholar 

  • Pérez-Cabero M, Taboada JB, Guerrero-Ruiz A, Overweg AR, Rodríguez-Ramos I (2006) The role of alpha-iron and cementite phases in the growing mechanism of carbon nanotubes: a 57Fe Mössbauer spectroscopy study. Phys Chem Chem Phys 8(10):1230–1235

    Article  Google Scholar 

  • Prené P, Tronc E, Jolivet J-P, Livage J, Cherkaoui R, Nogues M, Dormann J-L, Fiorani D (1993) Magnetic properties of isolated γ-Fe2O3 particles. Magn IEEE Trans 29(6):2658–2660

    Article  Google Scholar 

  • Ragheb RR, Kim D, Bandyopadhyay A, Chahboune H, Bulutoglu B, Ezaldein H, Criscione JM, Fahmy TM (2013) Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn Reson Med 70(6):1748–1760

    Article  Google Scholar 

  • Ramsden J (2009) Applied nanotechnology. William Andrew, Norwich

    Google Scholar 

  • Rudge SR, Kurtz TL, Vessely CR, Catterall LG, Williamson DL (2000) Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21(14):1411–1420

    Article  Google Scholar 

  • Sano N, Akazawa H, Kikuchi T, Kanki T (2003) Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41(11):2159–2162

    Article  Google Scholar 

  • Schettino MA Jr, Freitas JCC, Morigaki MK, Nunes E, Cunha AG, Passamani EC, Emmerich FG (2010) High-temperature xrd study of thermally induced structural and chemical changes in iron oxide nanoparticles embedded in porous carbons. J Nanoparticle Res 12(8):3097–3103

    Article  Google Scholar 

  • Schettino MA Jr, Gonçalves GR, Morigaki MK, Nunes E, Cunha AG, Passamani EC, Emmerich FG, Nascente PAP, Freitas JCC (2012) Synthesis, characterization and study of thermal behavior of nanostructured iron oxides embedded in porous carbon prepared from the decomposition of iron pentacarbonyl. In Martinez AI (ed) Iron oxides: structure, properties and applications, Nova Publishers, New York, pp 19–51

    Google Scholar 

  • Schnepp Z, Wimbush SC, Antonietti M, Giordano C (2010) Synthesis of highly magnetic iron carbide nanoparticles via a biopolymer route. Chem Mater 22(18):5340–5344

    Article  Google Scholar 

  • Snovski R, Grinblat J, Margel S (2012) Novel magnetic fe onion-like fullerene micrometer-sized particles of narrow size distribution. J Magn Magn Mater 324(1):90–94

    Article  Google Scholar 

  • Snovski R, Grinblat J, Sougrati MT, Jumas JC, Margel S (2014) Synthesis and characterization of iron, iron oxide and iron carbide nanostructures. J Magn Magn Mater 349:35–44

    Article  Google Scholar 

  • Steyn WJ (2009) Potential applications of nanotechnology in pavement engineering. J Transp Eng 135(10):764–772

    Article  Google Scholar 

  • Sun XC, Nava N (2002) Microstructure and magnetic properties of Fe(C) and Fe(O) nanoparticles. Nano Lett 2(7):765–769

    Article  Google Scholar 

  • Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72(18):184428

    Article  Google Scholar 

  • Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49(3–4):125–170

    Article  Google Scholar 

  • Wu W, He Q, Jiang C et al. (2009) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. ChemInform 40(24):i

  • Yu RH, Zhang XX, Tejada J, Knobel M, Tiberto P, Allia P (1995) Magnetic properties and giant magnetoresistance in melt-spun Co–Cu alloys. J Appl Phys 78(1):392–397

    Article  Google Scholar 

  • Zysler RD, Fiorani D, Testa AM (2001) Investigation of magnetic properties of interacting Fe2O3 nanoparticles. J Magn Magn Mater 224(1):5–11

    Article  Google Scholar 

Download references

Acknowledgments

The support from Brazilian agencies CNPq, CAPES, FINEP, and FAPES is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Schettino Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schettino Jr., M.A., Cunha, A.G., Nunes, E. et al. Synthesis and characterization of nanostructured iron compounds prepared from the decomposition of iron pentacarbonyl dispersed into carbon materials with varying porosities. J Nanopart Res 18, 90 (2016). https://doi.org/10.1007/s11051-016-3392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3392-3

Keywords

Navigation