Skip to main content

Advertisement

Log in

Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bagnall DM, Boreland M (2008) Photovoltaic technologies. Energy Policy 36:4390–4396. doi:10.1016/j.enpol.2008.09.070

    Article  Google Scholar 

  • Burello E, Worth AP (2011) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5:228–235. doi:10.3109/17435390.2010.502980

    Article  Google Scholar 

  • Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, Eiguren-Fernandez A, Froines JR (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res 99:40–47

    Article  Google Scholar 

  • De Vizcaya-Ruiz A, Gutiérrez-Castillo ME, Uribe-Ramirez M, Cebrián ME, Mugica-Alvarez V, Sepúlveda J, Rosas I, Salinas E, Garcia-Cuéllar C, Martínez F (2006) Characterization and in vitro biological effects of concentrated particulate matter from Mexico City. Atmos Environ 40:583–592. doi:10.1016/j.atmosenv.2005.12.073

    Article  Google Scholar 

  • Dhere NG (2007) Toward GW/year of CIGS production within the next decade. Sol Energy Mater Sol Cells 91:1376–1382. doi:10.1016/j.solmat.2007.04.003

    Article  Google Scholar 

  • Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5. doi:10.1093/toxsci/kfh041

    Article  Google Scholar 

  • Eisenberg DA, Yu M, Lam CW, Ogunseitan OA, Schoenung JM (2013) Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics. J Hazard Mater 260:534–542. doi:10.1016/j.jhazmat.2013.06.007

    Article  Google Scholar 

  • Escamilla-Rivera V, Uribe-Ramírez M, González-Pozos S, Lozano O, Lucas S, De Vizcaya-Ruiz A (2016) Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages. Toxicol Lett 240:172–184. doi:10.1016/j.toxlet.2015.10.018

    Article  Google Scholar 

  • European Commission (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union 50:38–40

    Google Scholar 

  • Forrest VJ, Kang YH, McClain DE, Robinson DH, Ramakrishnan N (1994) Oxidative stress-induced apoptosis prevented by Trolox. Free Radic Biol Med 16(6):675–684

    Article  Google Scholar 

  • Freyre-Fonseca V, Delgado-Buenrostro NL, Gutierrez-Cirlos EB, Calderon-Torres CM, Cabellos-Avelar T, Sanchez-Perez Y, Pinzon E, Torres I, Molina-Jijon E, Zazueta C, Pedraza-Chaverri J, Garcia-Cuellar CM, Chirino YI (2011) Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol Lett 202:111–119. doi:10.1016/j.toxlet.2011.01.025

    Article  Google Scholar 

  • Frick R, Müller-Edenborn B, Schlicker A, Rothen-Rutishauser B, Raemy DO, Günther D, Hattendorf B, Stark W, Beck-Schimmer B (2011) Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells. Toxicol Lett 205:163–172. doi:10.1016/j.toxlet.2011.05.1037

    Article  Google Scholar 

  • Fthenakis V (2009) Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sustain Energy Rev 13:2746–2750

    Article  Google Scholar 

  • Fthenakis V, Moskowitz PD (2000) Photovoltaics: environmental, health and safety issues and perspectives. Prog Photovoltaics Res Appl 8:27–38. doi:10.1002/(sici)1099-159x(200001/02)8:1<27:aid-pip296>3.0.co;2-8

    Article  Google Scholar 

  • George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, Zink JI, Nel AE, Mädler L (2011) Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133:11270–11278. doi:10.1021/ja202836s

    Article  Google Scholar 

  • Ghiazza M, Alloa E, Oliaro-Bosso S, Viola F, Livraghi S, Rembges D, Capomaccio R, Rossi F, Ponti J, Fenoglio I (2014) Inhibition of the ROS-mediated cytotoxicity and genotoxicity of nano-TiO2 toward human keratinocyte cells by iron doping. J Nanopart Res 16:1–17. doi:10.1007/s11051-014-2263-z

    Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004

    Article  Google Scholar 

  • Huang C, Aronstam R, Chen R, Huang W (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in vitro 24:45–55. doi:10.1016/j.tiv.2009.09.00

  • Izyumov DS, Domnina LV, Nepryakhina OK, Avetisyan AV, Golyshev SA, Ivanova OY, Korotetskaya MV, Lyamzaev KG, Pletjushkina OY, Popova EN, Chernyak BV (2010) Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants — the “Skulachev-ion” derivatives. Biochem Moscow 75:123–129

    Article  Google Scholar 

  • Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog Photovoltaics Res Appl 19:894–897. doi:10.1002/pip.1078

    Article  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. doi:10.1007/s11051-008-9446-4

    Article  Google Scholar 

  • Kamp DW, Panduri VA, Weitzman S, Chandel N (2002) Asbestos-induced alveolar epithelial cell apoptosis: role of mitochondrial dysfunction caused by iron-derived free radicals. Mol Cell Biochem 234–235:153–160

    Article  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343. doi:10.1016/j.freeradbiomed.2009.05.004

    Article  Google Scholar 

  • Kumagai Y, Koide S, Taguchi K, Endo A, Nakai Y, Yoshikawa T, Shimojo N (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem Res Toxicol 15:483–489. doi:10.1021/tx0100993

    Article  Google Scholar 

  • Liu C-J, Burghaus U, Besenbacher F, Wang ZL (2010) Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 4:5517–5526. doi:10.1021/nn102420c

    Article  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  Google Scholar 

  • Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12. doi:10.1093/annhyg/mel071

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105. doi:10.1111/j.1365-2796.2009.02187.x

    Article  Google Scholar 

  • Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183. doi:10.1146/annurev.pharmtox.47.120505.105122

    Article  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  Google Scholar 

  • Pal AK, Bello D, Budhlall B, Rogers E, Milton DK (2011) Screening for oxidative stress elicited by engineered nanomaterials: evaluation of acellular DCFH assay. Dose-Response 1:1–23. doi:10.2203/dose-response.10-036.Pal

    Google Scholar 

  • Reinhard P, Buecheler S, Tiwari AN (2013) Technological status of Cu(In, Ga)(Se, S)2-based photovoltaics. Sol Energy Mater Sol Cells 119:287–290. doi:10.1016/j.solmat.2013.08.030

    Article  Google Scholar 

  • Reyes P, Velumani S (2012) Structural and optical characterization of mechanochemically synthesized copper doped CdS nanopowders. Mater Sci Eng B-Adv Funct Solid-State Mater 177:1452–1459. doi:10.1016/j.mseb.2012.03.002

    Article  Google Scholar 

  • Sauvain J-J, Deslarzes S, Riediker M (2008) Nanoparticle reactivity toward dithiothreitol. Nanotoxicology 2:121–129

    Article  Google Scholar 

  • Tedja R, Marquis C, Lim M, Amal R (2011) Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects. J Nanopart Res 13:3801–3813. doi:10.1007/s11051-011-0302-6

    Article  Google Scholar 

  • Teodoro JS, Simoes AM, Duarte FV, Rolo AP, Murdoch RC, Hussain SM, Palmeira CM (2011) Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol In Vitro 25:664–670. doi:10.1016/j.tiv.2011.01.004

    Article  Google Scholar 

  • Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71

    Article  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  Google Scholar 

  • Vidhya B, Velumani S, Arenas-Alatorre JA, Morales-Acevedo A, Asomoza R, Chavez-Carvayar JA (2010). Structural studies of mechano-chemically synthesized CuIn1 x Ga x Se2 nanoparticles. Mater Sci Eng B 174: 216–221. doi:10.1016/j.mseb.2010.03.014

  • Wang L, Pal AK, Isaacs JA, Bello D, Carrier RL (2014) Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages. J Nanopart Res 16:1–14. doi:10.1007/s11051-014-2591-z

    Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J, Wiesner M, Nel A (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807. doi:10.1021/nl061025k

    Article  Google Scholar 

  • Xia T, Kovochich M, Liong M, Ma dler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel A (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134 doi:10.1021/nn800511k

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y-P, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Mädler L, Cohen Y, Zink JI, Nel A (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–4368. doi:10.1021/nn3010087

    Article  Google Scholar 

  • Zorov DB, Filburn CR, Klotz L-O, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS-induced) ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192(7):1001–1014

    Article  Google Scholar 

Download references

Acknowledgements

This research project was supported partially by Project No. ICyT-DF 396/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Vizcaya-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escamilla-Rivera, V., Uribe-Ramirez, M., Gonzalez-Pozos, S. et al. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity. J Nanopart Res 18, 85 (2016). https://doi.org/10.1007/s11051-016-3391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3391-4

Keywords

Navigation