Skip to main content
Log in

Synthesis, characterization, and electrochemical performance of nitrogen-modified Pt–Fe alloy nanoparticles supported on ordered mesoporous carbons

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A method has been demonstrated to synthesize nitrogen-modified Pt–Fe alloyed nanoparticles (9.2–11.3 nm) supported on ordered mesoporous carbon (Pt x Fe100−x N/OMC), which is fabricated by a conventional wet chemical synthesis of Pt–Fe alloyed nanoparticles and followed by carbonization of the nanoparticles with tetraethylenepentamine as nitrogen chelating agent. Among these electrocatalysts, the Pt30Fe70N/OMC has highly catalytic activity for the oxygen reduction reaction (ORR) with significantly enhanced methanol tolerance as well. Combining the results from X-ray diffraction and X-ray absorption spectroscopy, it can be observed that Pt metal in the Pt30Fe70N/OMC is present in the outer shell of Pt–Fe alloys with face-centered cubic crystalline structure. By X-ray photoelectron spectroscopy, the nitrogen-modified Pt surface of Pt30Fe70N/OMC exhibits significant selectivity toward the ORR in the presence of methanol. This enhancement of methanol tolerance could be attributed to the inhibition of methanol adsorption resulting from the modification of the Pt surface with nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baranton S, Coutanceau C, Roux C, Hahn F, Leger J-M (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577:223–234. doi:10.1016/j.jelechem.2004.11.034

    Article  Google Scholar 

  • Beyhan S, Şahin NE, Pronier S, Léger JM, Kadırgan F (2015) Comparison of oxygen reduction reaction on Pt/C, Pt–Sn/C, Pt–Ni/C, and Pt–Sn–Ni/C catalysts prepared by Bönnemann method: a rotating ring disk electrode study. Electrochim Acta 151:565–573. doi:10.1016/j.electacta.2014.11.053

    Article  Google Scholar 

  • Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ, Shen YH, Xiea AJ, Yu SH (2014) Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 7:4095–4103. doi:10.1039/c4ee02531h

    Article  Google Scholar 

  • Chiao SP, Tsai DS, Wilkinson DP, Chen YM, Huang YS (2010) Carbon supported Ru1−xFexSey electrocatalysts of pyrite structure for oxygen reduction reaction. Int J Hydrog Energy 35:6508–6517. doi:10.1016/j.ijhydene.2010.04.032

    Article  Google Scholar 

  • Di Noto V, Negro E, Polizzi S, Vezzu K, Toniolo L, Cavinato G (2014) Synthesis, studies and fuel cell performance of “core–shell” electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride “shell” and a pyrolyzed polyketone nanoball “core”. Int J Hydrog Energy 39:2812–2827. doi:10.1016/j.ijhydene.2013.08.054

    Article  Google Scholar 

  • Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411–412:35–44. doi:10.1016/j.memsci.2012.04.013

    Article  Google Scholar 

  • Ensafi AA, Jafari-Asl M, Rezaei B (2014) A new strategy for the synthesis of 3-D Pt nanoparticles on reduced graphene oxide through surface functionalization, application for methanol oxidation and oxygen reduction. Electrochim Acta 130:397–405. doi:10.1016/j.electacta.2014.03.057

    Article  Google Scholar 

  • Escudero Cid R, Gómez de la Fuente JL, Rojas S, Fierro JLG, Ocón P (2013) Polypyrrole-modified-carbon-supported Ru–Pt nanoparticles as highly methanol-tolerant electrocatalysts for the oxygen-reduction reaction. ChemCatChem 5:3680–3689. doi:10.1002/cctc.201300448

    Article  Google Scholar 

  • Gomez de la Fuente JL, Martinez-Huerta MV, Rojas S, Hernandez-Fernandez P, Terreros P, Fierro JLG, Peña MA (2009) Tailoring and structure of PtRu nanoparticles supported on functionalized carbon for DMFC applications: new evidence of the hydrous ruthenium oxide phase. Appl Catal B 88:505–514. doi:10.1016/j.apcatb.2008.10.016

    Article  Google Scholar 

  • Hobson LJ, Nakano Y, Ozu H, Hayase S (2002) Targeting improved DMFC performance. J Power Sources 104:79–84. doi:10.1016/S0378-7753(01)00875-8

    Article  Google Scholar 

  • Huang XJ, Tang YG, Yang LF, Chen P, Wu QS, Pan Z (2015) CMK3/graphene–N–Co—a low-cost and high performance catalytic system. J Mater Chem A 3:2978–2984. doi:10.1039/c4ta06184e

    Article  Google Scholar 

  • Hwang BJ, Sarma LS, Chen JM, Chen CH, Shih SC, Wang GR, Liu DG, Lee JF, Tang MT (2005) Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J Am Chem Soc 127:11140–11145. doi:10.1021/ja0526618

    Article  Google Scholar 

  • Hwang BJ, Sarma LS, Wang GR, Chen CH, Liu DG, Sheu HS, Lee JF (2007) Heat-induced alterations in the surface population of metal sites in bimetallic nanoparticles. Chem Eur J 13:6255–6264. doi:10.1002/chem.200700126

    Article  Google Scholar 

  • Jin C, Nagaiah TC, Xia W, Spliethoff B, Wang SS, Bron M, Schuhmann W, Muhler M (2010) Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale 2:981–987. doi:10.1039/B9NR00405J

    Article  Google Scholar 

  • Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172. doi:10.1038/35084046

    Article  Google Scholar 

  • Kang S, Shen PK (2014) A resin-based methodology to synthesize N-doped graphene-like metal-free catalyst for oxygen reduction. Electrochim Acta 142:182–186. doi:10.1016/j.electacta.2014.07.100

    Article  Google Scholar 

  • Kim H, Lee K, Woo SI, Jung Y (2011) On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem Chem Phys 13:17505–17510. doi:10.1039/C1CP21665A

    Article  Google Scholar 

  • Kong LB, Li H, Zhang J, Luo YC, Kang L (2010) Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation. Appl Surf Sci 256:6688–6693. doi:10.1016/j.apsusc.2010.04.071

    Article  Google Scholar 

  • Lai FJ, Sarma LS, Chou HL, Liu DG, Hsieh CA, Lee JF, Hwang B-J (2009) Architecture of bimetallic PtxCo1−x electrocatalysts for oxygen reduction reaction as investigated by X-ray absorption spectroscopy. J Phys Chem C 113:12674–12681. doi:10.1021/jp903105e

    Article  Google Scholar 

  • Lai FJ, Chou HL, Sarma LS, Wang DY, Lin YC, Lee JF, Hwang BJ, Chen CC (2010) Tunable properties of PtxFe1 − x electrocatalysts and their catalytic activity towards the oxygen reduction reaction. Nanoscale 2:573–581. doi:10.1039/B9NR00239A

    Article  Google Scholar 

  • Liu S-H, Chen S-C (2011) Stepwise synthesis, characterization, and electrochemical properties of ordered mesoporous carbons containing well-dispersed Pt nanoparticles using a functionalized template route. J Solid State Chem 184:2420–2427. doi:10.1016/j.jssc.2011.07.016

    Article  Google Scholar 

  • Liu S-H, Wu J-R (2014) Influence of nitrogen and iron precursors on the synthesis of FeNx/carbons electrocatalysts toward oxygen reduction reaction in acid solution. Electrochim Acta 135:147–153. doi:10.1016/j.electacta.2014.04.167

    Article  Google Scholar 

  • Liu S-H, Chen S-C, Sie W-H (2011a) Heat-treated platinum nanoparticles embedded in nitrogen-doped ordered mesoporous carbons: synthesis, characterization and their electrocatalytic properties toward methanol-tolerant oxygen reduction. Int J Hydrog Energy 36:15060–15067. doi:10.1016/j.ijhydene.2011.08.083

    Article  Google Scholar 

  • Liu S-H, Lin Y-C, Chien Y-C, Hyu H-R (2011b) Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent. J Air Waste Manag Assoc 61:226–233. doi:10.3155/1047-3289.61.2.226

    Article  Google Scholar 

  • Liu S-H, Wu M-T, Lai Y-H, Chiang C-C, Yu N, Liu S-B (2011c) Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygen reduction reaction. J Chem Mater 21:12489–12496. doi:10.1039/C1JM11488C

    Article  Google Scholar 

  • Liu S-H, Zheng F-S, Wu J-R (2011d) Preparation of ordered mesoporous carbons containing well-dispersed and highly alloying Pt–Co bimetallic nanoparticles toward methanol-resistant oxygen reduction reaction. Appl Catal B 108–109:81–89. doi:10.1016/j.apcatb.2011.08.011

    Article  Google Scholar 

  • Liu S-H, Wu J-R, Pan C-J, Hwang B-J (2014) Synthesis and characterization of carbon incorporated Fe–N/carbons for methanol-tolerant oxygen reduction reaction of polymer electrolyte fuel cells. J Power Sources 250:279–285. doi:10.1016/j.jpowsour.2013.11.011

    Article  Google Scholar 

  • Lufrano F, Baglio V, Staiti P, Antonucci V, Arico AS (2013) Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 243:519–534. doi:10.1016/j.jpowsour.2013.05.180

    Article  Google Scholar 

  • Luna AMC, Bonesi A, Triaca WE, Di Blasi A, Stassi A, Baglio V, Antonucci V, Arico AS (2010) Investigation of a Pt–Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells. J Nanopart Res 12:357–365. doi:10.1007/s11051-009-9726-7

    Article  Google Scholar 

  • Madhu, Singh RN (2011) Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int J Hydrog Energy 36:10006–10012. doi:10.1016/j.ijhydene.2011.05.069

    Article  Google Scholar 

  • Malheiro AR, Perez J, Villullas HM (2010a) Dependence on composition of electronic properties and stability of Pt–Fe/C catalysts for oxygen reduction. J Power Sources 195:7255–7258. doi:10.1016/j.jpowsour.2010.05.036

    Article  Google Scholar 

  • Malheiro AR, Perez J, Villullas HM (2010b) Surface structure and electronic properties of Pt–Fe/C nanocatalysts and their relation with catalytic activity for oxygen reduction. J Power Sources 195:3111–3118. doi:10.1016/j.jpowsour.2009.11.096

    Article  Google Scholar 

  • Masa J, Zhao A, Xia W, Muhler M, Schuhmann W (2014) Metal-free catalysts for oxygen reduction in alkaline electrolytes: influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochim Acta 128:271–278. doi:10.1016/j.electacta.2013.11.026

    Article  Google Scholar 

  • Moreira J, del Angel P, Ocampo AL, Sebastián PJ, Montoya JA, Castellanos RH (2004) Synthesis, characterization and application of a Pd/Vulcan and Pd/C catalyst in a PEM fuel cell. Int J Hydrog Energy 29:915–920. doi:10.1016/j.ijhydene.2003.06.003

    Article  Google Scholar 

  • Oh JG, Kim H (2008) Synthesis and characterization of PtNx/C as methanol-tolerant oxygen reduction electrocatalysts for a direct methanol fuel cell. J Power Sources 181:74–78. doi:10.1016/j.jpowsour.2008.02.095

    Article  Google Scholar 

  • Ostrovsky S, Larsen MJ, Peled A, Lellouche JP (2015) Photochemically modified ATO NPs as conductive support of Pt electrocatalysts for proton exchange membrane fuel cells. J Nanopart Res 17:273. doi:10.1007/s11051-015-3075-5

    Article  Google Scholar 

  • Ozenler SS, Kadirgan F (2006) The effect of the matrix on the electro-catalytic properties of methanol tolerant oxygen reduction catalysts based on ruthenium-chalcogenides. J Power Sources 154:364–369. doi:10.1016/j.jpowsour.2005.10.031

    Article  Google Scholar 

  • Prabhuram J, Wang X, Hui CL, Hsing IM (2003) Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. J Phys Chem B 107:11057–11064. doi:10.1021/jp0357929

    Article  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.1107/S0909049505012719

    Article  Google Scholar 

  • Sarapuu A, Kasikov A, Laaksonen T, Kontturi K, Tammeveski K (2008) Electrochemical reduction of oxygen on thin film Pt electrodes in acid solutions. Electrochim Acta 53:5873–5880. doi:10.1016/j.electacta.2008.04.003

    Article  Google Scholar 

  • Sevilla M, Yu L, Fellinger TP, Fuertes AB, Titirici MM (2013) Polypyrrole-derived mesoporous nitrogen-doped carbons with intrinsic catalytic activity in the oxygen reduction reaction. RSC Adv 3:9904–9910. doi:10.1039/C3RA41719K

    Article  Google Scholar 

  • Shao MH, Sasaki K, Adzic RR (2006) Pd–Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128:3526–3627. doi:10.1021/ja060167d

    Article  Google Scholar 

  • Shi H, Shen YF, He F, Li Y, Liu AR, Liu SQ, Zhang YJ (2014) Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J Mater Chem A2:15704–15716. doi:10.1039/C4TA02790F

    Article  Google Scholar 

  • Soto G (2004) Synthesis of PtNx films by reactive laser ablation. Mater Lett 58:2178–2180. doi:10.1016/j.matlet.2004.01.019

    Article  Google Scholar 

  • Su F, Tian Z, Poh CK, Wang Z, Lim SH, Liu Z, Lin J (2010) Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells. Chem Mater 22:832–839. doi:10.1021/cm901542w

    Article  Google Scholar 

  • Tsai YW, Tseng YL, Sarma LS, Liu DG, Lee JF, Hwang BJ (2004) Genesis of Pt clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy. J Phys Chem B 108:8148–8152. doi:10.1021/jp0495592

    Article  Google Scholar 

  • Wang Y, Zang J, Dong L, Pan H, Yuan Y, Wang Y (2013) Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell. Electrochim Acta 113:583–590. doi:10.1016/j.electacta.2013.09.091

    Article  Google Scholar 

  • Wang G, Wang WH, Wang LK, Yao WT, Yao PF, Zhu WK, Chen P, Wu QS (2015) A N-, Fe- and Co-tridoped carbon nanotube/nanoporous carbon nanocomposite with synergistically enhanced activity for oxygen reduction in acidic media. J Mater Chem A 3:17866–17873. doi:10.1039/c5ta03523f

    Article  Google Scholar 

  • Wu G, Dai C, Wang D, Li D, Li N (2010) Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells. J Mater Chem 20:3059–3068. doi:10.1039/B924010A

    Article  Google Scholar 

  • Wu ZY, Chen P, Wu QS, Yang LF, Pan Z, Wang Q (2014) Co/Co3O4/C–N, a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy 8:118–125. doi:10.1016/j.nanoen.2014.05.019

    Article  Google Scholar 

  • Xiong L, Manthiram A (2005) Nanostructured Pt–M/C (M = Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells. Electrochim Acta 50:2323–2329. doi:10.1016/j.electacta.2004.10.046

    Article  Google Scholar 

  • Xu D, Tian Y, Zhao JX, Wang XZ (2015) High stability and reactivity of defective graphene supported FenPt13−n (n = 1, 2, and 3) nanoparticles for oxygen reduction reaction: a theoretical study. J Nanopart Res 17:25. doi:10.1007/s11051-014-2834-z

    Article  Google Scholar 

  • Yang H, Coutanceau C, Leger JM, Alonso-Vante N, Lamy C (2005) Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. J Electroanal Chem 576:305–313. doi:10.1016/j.jelechem.2004.10.026

    Article  Google Scholar 

  • Yuan W, Scott K, Cheng H (2006) Fabrication and evaluation of Pt–Fe alloys as methanol tolerant cathode materials for direct methanol fuel cells. J Power Sources 163:323–329. doi:10.1016/j.jpowsour.2006.09.005

    Article  Google Scholar 

  • Yuan WJ, Li JC, Chen P, Shen YH, Xie AJ (2014) A one-pot hydrothermal synthesis of 3D nitrogen-doped graphene aerogels-supported NiS2 nanoparticles as efficient electrocatalysts for the oxygen-reduction reaction. J Nanopart Res 16:2311. doi:10.1007/s11051-014-2311-8

    Article  Google Scholar 

  • Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of X-ray-absorption spectra. J Phys Rev B 52:2995–3009. doi:10.1103/PhysRevB.52.2995

    Article  Google Scholar 

  • Zhang J, He D, Su H, Chen X, Pan M, Mu SC (2014a) Porous polyaniline-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. J Mater Chem A 2:1242–1246. doi:10.1039/C3TA14065B

    Article  Google Scholar 

  • Zhang R, Peng Y, Li Z, Li K, Ma J, Liao Y, Zheng L, Zuo X, Xia DG (2014b) Oxygen electroreduction on heat-treated multi-walled carbon nanotubes supported iron polyphthalocyanine in acid media. Electrochim Acta 147:343–351. doi:10.1016/j.electacta.2014.09.064

    Article  Google Scholar 

  • Zheng F-S, Liu S-H, Kuo C-W (2016) Ultralow Pt amount of Pt-Fe alloys supported on ordered mesoporous carbons with excellent methanol tolerance during oxygen reduction reaction. Int J Hydrogen Energy 41:2487–2497. doi:10.1016/j.ijhydene.2015.12.018

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports of this work from the Ministry of Science and Technology of Taiwan and Ministry of Economic Affairs (Bureau of Energy) of Taiwan (Contract No.: NSC99-2221-E-151-044-MY2 and MOST 104-ET-E-006-006-ET) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Heng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, FS., Liu, SH. & Kuo, CW. Synthesis, characterization, and electrochemical performance of nitrogen-modified Pt–Fe alloy nanoparticles supported on ordered mesoporous carbons. J Nanopart Res 18, 75 (2016). https://doi.org/10.1007/s11051-016-3387-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3387-0

Keywords

Navigation