Skip to main content
Log in

Effect of alloying on the stabilities and catalytic properties of Pt–Au bimetallic subnanoclusters: a theoretical investigation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) has been applied to study the geometrical and electronic structures and the catalytic properties for NO oxidation of pure Pt and PtAu clusters. The calculated results suggest that Pt10 clusters shows the most stable structure among the pure Pt n (n = 2–13) clusters with the local maximum Δ2 E value. The doping of Au atoms reduces the stability of the clusters, and Pt6Au4 cluster has the most stable structure among Pt10−n Au n (n = 1–7) clusters, due to the closest band centers between Pt and Au atoms (0.83 eV) and the obvious s–p resonance peaks near the Fermi level. Pt6Au4 cluster displays the strongest activation of O2 molecules among Pt10−n Au n (n = 0–7) clusters, owing to the clear overlap between O 2p and Pt 6 s and Au 6 s near the Fermi level, and the more positive d band center than the others. The interaction between NO and metals changes slightly in NO/Pt10-nAun (n = 2–7) systems, which is weaker than that in NO/Pt9Au system, as a result of the decreasing resonance peaks of sp hybridization near the Fermi level. Compared to pure Pt10 cluster, the lower energy barriers and larger reaction energies on Pt6Au4 cluster suggest a higher catalytic activity of PtAu cluster for the O2 dissociation and NO oxidation reactions. Our study provides atomic-scale insights into the nature of the interfacial effect that determines NO oxidation on PtAu cluster catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baetzold R-C (2007) Atomistic modeling of silver clusters formed on the surface of AgBr. J Phys Chem C 111:1385–1391

    Article  Google Scholar 

  • Barcaro G, Fortunelli A (2009) Structural and electronic properties of small platinum metallorganic complexes. Theor Chem Acc 123:317–325

    Article  Google Scholar 

  • Bhattacharyya K, Majumder C (2007) Growth pattern and bonding trends in Pt n (n = 2–13) clusters: theoretical investigation based on first principle calculations. Chem Phys Let 446:374–379

    Article  Google Scholar 

  • Ciabatti I, Femoni C, Iapalucci M-C, Longoni G, Lovato T, Zacchini S (2013) PPh3-Derivatives of [Pt3n (CO)6n ]2− (n = 2–6) Chini’s clusters: syntheses, structures, and 31P NMR studies. Inorg Chem 52:4384–4395

    Article  Google Scholar 

  • Das N-K, Shoji T (2012) Geometry, orbital interaction, and oxygen chemisorption properties of chromium-doped nickel clusters. J Phys Chem C 116:13353–13367

    Article  Google Scholar 

  • Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  Google Scholar 

  • Forzatti P, Nova I, Tronconi E (2010) New “Enhanced NH3-SCR” reaction for NOx emission control. Ind Eng Chem Res 49:10386–10391

    Article  Google Scholar 

  • Gieshoff J, Schäfer-Sindlinger A, Spurk P-C, Tillaart J-A (2000) Improved SCR systems for heavy-duty applications. SAE Pap 1:189–199

    Google Scholar 

  • Gutta P, Hoffmann R (2003) Propensity of different AgBr surfaces for photoinduced silver cluster formation: a molecular orbital analysis. J Phys Chem A 107:8184–8190

    Article  Google Scholar 

  • Hao J-M, Tian H-Z, Lu Y-Q (2002) Emission inventories of NOx from commercial energy consumption in China, 1995–1998. Environ Sci Technol 36:552–560

    Article  Google Scholar 

  • Hehre W-J, Radom L, Schleyer P, Pople J (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  • Kessi A, Delley B (1998) Density functional crystal vs. cluster models as applied to zeolites. Int J Quantum Chem 68:135–144

    Article  Google Scholar 

  • Kim H, Takashima K, Katasura S, Mizuno A (2001) Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts. J Phys D Appl Phys 34:604–613

    Article  Google Scholar 

  • Koebel M, Elsener M, Madia G (2001) Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures. Ind Chem Eng Res. 40:52–59

    Article  Google Scholar 

  • Lin S, Ye X, Johnson R-S, Guo H (2013) First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation. J Phys Chem C 117:17319–17326

    Article  Google Scholar 

  • Lin S-P, Wang K-W, Liu C-W, Chen H-S, Wang J-H (2015) Trends of oxygen reduction reaction on platinum alloys: a computational and experimental study. J Phys Chem C 119:15224–15231

    Article  Google Scholar 

  • Liu G, Gao P-X (2011) A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies. Catal Sci Technol 1:552–568

    Article  Google Scholar 

  • Luo J, Maye M-M, Petkov V, Kariuki N-N, Wang L, Njoki P, Mott D, Lin Y, Zhong C-J (2005) Phase properties of carbon-supported gold–platinum nanoparticles with different bimetallic compositions. Chem Mater 17:3086–3091

    Article  Google Scholar 

  • Madia G, Koebel M, Elsener M, Wokaun A (2002) The effect of an oxidation precatalyst on the NOx reduction by ammonia SCR. Ind Eng Chem Res 41:3512–3517

    Article  Google Scholar 

  • Mihut C, Descorme C, Duprez D, Amiridis M-D (2002) Kinetic and spectroscopic characterization of cluster-derived supported Pt–Au catalysts. J Catal 212:125–135

    Article  Google Scholar 

  • Monks P-S, Granier C, Fuzzi S et al (2009) Atmospheric composition change-global and regional air quality. Atmos Environ 43:5268–5350

    Article  Google Scholar 

  • Nilekar A-U, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Sur Sci 602:89–94

    Article  Google Scholar 

  • Penetrante B-M, Brusasco R-M, Merritt B-T, Vogtlin G-E (1999a) Sulfur tolerance of selective partial oxidation of NO to NO2 in a plasma. SAE Pap 1:3687–3697

    Google Scholar 

  • Penetrante B-M, Brusasco R-M, Merritt B-T, Vogtlin G-E (1999b) Environmental applications of low-temperature plasma. Pure Appl Chem 71:1829–1835

    Article  Google Scholar 

  • Peng C, Schlegel H-B (1993) Combining synchronous transit and quasi-newton methods to find transition states. Israel J Chem 33:449–454

    Article  Google Scholar 

  • Peng C, Ayala P-Y, Schlegel H-B, Frisch M-J (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comp Chem 17:49–56

    Article  Google Scholar 

  • Sebetci A, Guvenc Z-B (2003) Energetics and structures of small clusters: PtN, N = 2–21. Sur Sci 525:66–84

    Article  Google Scholar 

  • Taylor S, Lemire G-W, Hamrick Y-M, Fu Z, Morse M-D (1988) Resonant two-photon ionization spectroscopy of jet-cooled Pt2. J Chem Phys 89:5517–5523

    Article  Google Scholar 

  • Voter A-F (1993) Los Alamons Unclassified Technical Report # LA-UR 93-3901

  • Wang A-Q, Chang C-M, Mou C-Y (2005) Evolution of catalytic activity of Au–Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J Phys Chem B 109:18860–18867

    Article  Google Scholar 

  • Yang S-H, Drabold D-A, Adams J-B, Ordejon P, Glassford K (1997) Density functional studies of small platinum clusters. J Phys 9:39–45

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for NSFC (21303266), Natural Science Foundation of Shandong Province (ZR2015BQ009), and the Fundamental Research Funds for the Central Universities (12CX02014A and 15CX08010A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyue Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10627 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Y., Zhao, L., Lu, X. et al. Effect of alloying on the stabilities and catalytic properties of Pt–Au bimetallic subnanoclusters: a theoretical investigation. J Nanopart Res 18, 78 (2016). https://doi.org/10.1007/s11051-016-3386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3386-1

Keywords

Navigation