Skip to main content

Advertisement

Log in

Hydrothermal synthesis, characterization, and luminescence of Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were synthesized by the hydrothermal reaction method. The structural refinement was conducted on the base of the X-ray powder diffraction (XRD) measurements. The surface properties of the Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were investigated by the measurements such as the scanning electron microscope (SEM), transmission electron microscope (TEM), and the energy dispersive spectrum (EDS). The nanofiber has a diameter of about 100 nm and a length of several micrometers. The luminescence properties such as photoluminescence excitation (PLE) and emission spectra (PL), decay lifetime, color coordinates, and the absolute internal quantum efficiency (QE) were reported. Ca2B2O5:Eu3+ nanofibers show the red luminescence with CIE coordinates of (x = 0.41, y = 0.51) and the luminescence lifetime of 0.63 ms. The luminescence of Ca2B2O5:Tb3+ nanofibers is green color (x = 0.29, y = 0.53) with the lifetime of 2.13 ms. However, Dy3+-doped Ca2B2O5 nanofibers present a single-phase white-color phosphor with the fluorescence decay of 3.05 ms. Upon near-UV excitation, the absolute quantum efficiency is measured to be 65, 35, and 37 % for Eu3+-, Tb3+-, Dy3+-doped Ca2B2O5 nanofibers, respectively. It is suggested that Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers could be an efficient phosphor for lighting and display.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bedekar V, Dutta DP, Mohapatra M, Godbole S, Ghildiyal R, Tyagi A (2009) Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs. Nanotechnology 20:125707

    Article  Google Scholar 

  • Blasse G (1986) Energy transfer between inequivalent Eu2+ ions. J Solid State Chem 62:207–211

    Article  Google Scholar 

  • Das S, Reddy AA, Babu SS, Prakash GV (2011) Controllable white light emission from Dy3+–Eu3+ co-doped KCaBO3 phosphor. J Mater Sci 46:7770–7775

    Article  Google Scholar 

  • Fujimoto Y, Yanagida T, Koshimizu M, Asai K (2015) Photoluminescence, photo-stimulated luminescence and thermoluminescence properties of CaB2O4 crystals activated with Ce3+. Opt Mater 41:49–52

    Article  Google Scholar 

  • Haghiri ME, Saion E, Soltani N, wan Abdullah WS, Navasery M, Hashim M (2013) Thermoluminescence characteristics of copper activated calcium borate nanocrystals (CaB4O7:Cu). J Lumin 141:177–183

    Article  Google Scholar 

  • Hart P, Brown C (1962) The synthesis of new calcium borate compounds by hydrothermal methods. J Inorg Nucl Chem 24:1057–1065

    Article  Google Scholar 

  • Huang J, Zhou L, Pang Q, Gong F, Sun J, Wang W (2009) Photoluminescence properties of a novel phosphor CaB2O4: Eu3+ under NUV excitation. Luminescence 24:363–366

    Article  Google Scholar 

  • Ishii T, Kokaku H, Nagai A, Nishita T, Kakimoto M (2006) Calcium borate flame retardation system for epoxy molding compounds. Polym Eng Sci 46:799

    Article  Google Scholar 

  • Lin QS, Cheng WD, Chen JT, Huang J-S (1999a) Calcium pyroborate, Ca2B2O5. Acta Crystallogr Sect C 55:4–6

    Article  Google Scholar 

  • Lin Q, Cheng W, Chen J, Long D, Zheng F, Huang J (1999b) The electronic energy band structures of pyroborate calcium. Acta Chim Sin-Chin Ed 57:143–148

    Google Scholar 

  • Liu Z, Zuo C, Li S (2004) Synthesis and thermochemistry of 2CaO·B2O3·H2O. Thermochim Acta 424:59–62

    Article  Google Scholar 

  • Liu ZH, Zuo CF, Hu MC (2005) Hydrothermal synthesis, characterization and thermochemistry of Ca2[B2O4(OH)2]·0.5H2O. Thermochim Acta 435:168–171

    Article  Google Scholar 

  • Lu X, You Z, Li J, Zhu Z, Jia G, Wu B, Tu C (2006) Optical properties of Er3+ doped Ca3(BO3)2 crystal. J Appl Phys 100:3103

    Google Scholar 

  • Ma J, Wu Q, Ding Y (2007) Assembly and deagglomeration of lanthanum orthoborate nanobundles. J Am Ceram Soc 90:3890–3895

    Google Scholar 

  • Qi S, Huang Y, Li Y, Cai P, Kim SI, Seo HJ (2014) Probe spectrum measurements of Eu3+ ions as a relevant tool for monitoring in vitro hydroxyapatite formation in a new borate biomaterial. J Mater Chem B 2:6387–6396

    Article  Google Scholar 

  • Su Q, Xu G (1991) In: Proceedings of the second international conference on rare earth development and application vol 2, p 765

  • Sun XY, Zhang J-C, Liu X-G, Lin L-W (2012) Enhanced luminescence of novel Ca3B2O6: Dy3+ phosphors by Li+-codoping for LED applications. Ceram Int 38:1065–1070

    Article  Google Scholar 

  • Wan MH, Wong PS, Hussin R, Lintang HO, Endud S (2014) Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses. J Alloys Compd 595:39–45

    Article  Google Scholar 

  • Wang D, Fan J, Shang M, Li K, Zhang Y, Lian H, Lin J (2016) Pechini-type sol–gel synthesis and multicolor-tunable emission properties of GdY(MoO4)3:RE3+ (RE = Eu, Dy, Sm, Tb) phosphors. Opt Mater 51:162–170

    Article  Google Scholar 

  • Wei Q, Cheng J-W, He C, Yang G-Y (2014) An acentric calcium borate Ca2 [B5O9]·(OH)·H2O: synthesis, structure, and nonliner optical property. Inorg Chem 53:11757–11763

    Article  Google Scholar 

  • Yang J, Li G, Peng C, Li C, Zhang C, Fan Y, Xu Z, Cheng Z, Lin J (2010) Homogeneous one-dimensional structured Tb(OH)3:Eu3+ nanorods: Hydrothermal synthesis, energy transfer, and tunable luminescence properties. J Solid State Chem 183:451–457

    Article  Google Scholar 

  • Yang L, Zhou L, Chen X, Liu X, Hua P, Shi Y, Yue X, Tang Z, Huang Y (2011) Hydrothermal synthesis of YBO3: Tb3+ microflowers and their luminescence properties. J Alloys Compd 509:3866–3871

    Article  Google Scholar 

  • Yang P, Yu X, Xu X, Jiang T, Yu H, Zhou D, Yang Z, Song Z, Qiu J (2013) Single-phased CaAl2Si2O8:Tm3+, Dy3+ white-light phosphors under ultraviolet excitation. J Solid State Chem 202:143–148

    Article  Google Scholar 

  • You H, Wu X, Zeng X, Hong G, Kim C-H, Pyun C-H, Park CH (2001) Infrared spectra and VUV excitation properties of BaLnB9O16: Re (Ln=La, Gd; Re=Eu, Tb). Mater Sci Eng, B 86:11–14

    Article  Google Scholar 

  • Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang H, Han Y (2002) Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem Mater 14:2224–2231

    Article  Google Scholar 

  • Zhao G, Zhang L, Wang J, Li J, Qian Q, Pan X, Gu Y (2011) Synthesis of thorn-like Ca2B2O5·H2O by hydrothermal method. Bull Mater Sci 34:1197–1199

    Article  Google Scholar 

  • Zhu W, Zhang X, Wang X, Zhang H, Zhang Q, Xiang L (2011) Short belt-like Ca2B2O5·H2O nanostructures: hydrothermal formation, FT-IR, thermal decomposition, and optical properties. J Cryst Growth 332:81–86

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013RA1A2009154) and by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanlin Huang or Hyo Jin Seo.

Ethics declarations

Conflict of interest

Li Yang, Yingpeng Wan, Yuze Li, Yinfu Pu, Yanlin Huang, Cuili Chen, and Hyo Jin Seo declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wan, Y., Li, Y. et al. Hydrothermal synthesis, characterization, and luminescence of Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers. J Nanopart Res 18, 94 (2016). https://doi.org/10.1007/s11051-016-3372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3372-7

Keywords

Navigation