Toward responsible development and effective risk management of nano-enabled products in the U.S. construction industry

Abstract

The global construction sector is experiencing major improvements to building materials used in large quantities through commercial applications of nanotechnology. Nano-enabled construction products hold great promise for energy efficiency and resource conservation, but risk assessments lag as new products emerge. This paper presents results from an inventory, survey, and exposure assessment conducted by the authors and explores these findings in the broader context of evolving research trends and responsible development of nanotechnology. An inventory of 458 reportedly nano-enabled construction products provided insight into product availability, potential exposures, and deficiencies in risk communication that are barriers to adoption of proactive safety measures. Seasoned construction trainers surveyed were largely unaware of the availability of nano-enabled construction products. Exposure assessment demonstrated the effectiveness of ventilation to reduce exposures during mechanical abrasion of photocatalytic tiles containing titanium dioxide (TiO2). Dissociated particles of TiO2 just above the nanoscale (138 nm) were detected in the debris collected during cutting of the tiles, but measurements were below recommended exposure limits for TiO2. Exposure assessments remain scarce, and toxicological understanding primarily pertains to unincorporated nanomaterials; less is known about the occupational risks of nano-enabled construction products across their life cycle. Further research is needed to characterize and quantify exposure to debris released from nanocomposite materials for realistic risk assessment, and to ascertain how nanocomposite matrices, fillers, and degradation forces interact to affect release dynamics. Improving risk communication strategies and implementing safe work practices will cultivate responsible development of nanotechnology in construction, as will multidisciplinary research efforts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Azarmi F, Kumar P, Mulheron M, Colaux J, Jeynes C, Adhami S, Watts J (2015) Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities. J Nanopart Res 17(8):1–19

    Article  Google Scholar 

  2. Balbus JM, Florini K, Denison RA, Walsh SA (2006) Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment. Ann N Y Acad Sci 1076:331–342

    Article  Google Scholar 

  3. Beaudrie CEH, Kandlikar M, Satterfield T (2013) From cradle-to-grave at the nanoscale: gaps in U.S. regulatory oversight along the nanomaterial life cycle. Environ Sci Technol 47(11):5524–5534

    Article  Google Scholar 

  4. Bekker C, Brouwer DH, Tielemans E, Pronk A (2013) Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure. Ann Occup Hyg 57(3):314–327

    Article  Google Scholar 

  5. Blade LM, Yencken MS, Wallace ME et al (2007) Hexavalent chromium exposures and exposure-control technologies in American enterprise: results of a NIOSH field research study. J Occup Environ Hyg 4(8):596–618

    Article  Google Scholar 

  6. Brand P, Lenz K, Reisgen U, Kraus T (2013) Number size distribution of fine and ultrafine fume particles from various welding processes. Ann Occup Hyg 57(3):305–313

    Article  Google Scholar 

  7. Brochot C, Michielsen N, Chazelet S, Thomas D (2012) Measurement of protection factor of respiratory protective devices toward nanoparticles. Ann Occup Hyg 56(5):595–605

    Google Scholar 

  8. Broekhuizen F, Broekhuizen P (2009) Nano-products in the European construction industry: state of the art 2009. FIEC-EFBWW, Brussels, http://www.efbww.org/pdfs/Nano%20-%20final%20report%20ok.pdf

  9. Broekhuizen P, Broekhuizen F, Cornelissen R, Reijnders L (2011) Use of nanomaterials in the European construction industry and some occupational health aspects thereof. J Nanopart Res 13(2):447–462

    Article  Google Scholar 

  10. Carlo RV, Sheehy J, Feng HA, Sieber WK (2010) Laboratory evaluation to reduce respirable crystalline silica dust when cutting concrete roofing tiles using a masonry saw. J Occup Environ Hyg 7(4):245–251

    Article  Google Scholar 

  11. Castranova V, Porter DW, Mercer RR (2014) Interaction with alveolar lining fluid. In: Tsuda A, Gehr P (eds) Nanoparticles in the lung: Environmental exposure and drug delivery. CRC Press, Boca Raton, pp 73–84

    Google Scholar 

  12. CPWR (2013) Respiratory and other health hazards in construction. In: The Construction chart book: The U.S. construction industry and its workers, 5th edn. CPWR—The Center for Construction Research and Training, Silver Spring, pp 35a–35d

  13. CPWR (2014) eLCOSH Nano, Construction nanomaterial inventory. http://www.nano.elcosh.org. Accessed 17 March 2015

  14. Dement J, Welch L, Ringen K, Quinn P, Chen A, Haas S (2015) A case-control study of airways obstruction among construction workers. Am J Ind Med 58(10):1083–1097

    Article  Google Scholar 

  15. Deurssen E, Meijster T, Oude Hengel KM, Boessen R, Spaan S, Tielemans E, Heederik D, Pronk A (2015) Effectiveness of a multidimensional randomized control intervention to reduce quartz exposure among construction workers. Ann Occup Hyg 59(8):959–971

    Article  Google Scholar 

  16. Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A (2013) Pulmonary toxicity of carbon nanotubes and asbestos—similarities and differences. Adv Drug Deliv Rev 65(15):2078–2086

    Article  Google Scholar 

  17. Duncan TV (2015) Release of engineered nanomaterials from polymer nanocomposites: the effect of matrix degradation. ACS Appl Mater Interfaces 7(1):20–39

    Article  Google Scholar 

  18. Dylla H, Hassan MM (2012) Characterization of nanoparticles released during construction of photocatalytic pavements using engineered nanoparticles. J Nanopart Res 14(4):1–15

    Article  Google Scholar 

  19. Eastlake A, Hodson L, Geraci C, Crawford C (2012) A critical evaluation of material safety data sheets (MSDSs) for engineered nanomaterials. J Chem Health Saf 19(5):1–8

    Article  Google Scholar 

  20. Filios MS, Mazurek JM, Schleiff PL, Reilly MJ, Rosenman KD, Lumia ME, Worthington K (2015) Summary of notifiable noninfectious conditions and disease outbreaks: surveillance for silicosis—Michigan and New Jersey, 2003-2010. MMWR Morb Mortal Wkly Rep 62(54):81–85

    Article  Google Scholar 

  21. Flynn MR, Susi P (2003) Engineering controls for selected silica and dust exposures in the construction industry–a review. Appl Occup Environ Hyg 18(4):268–277

    Article  Google Scholar 

  22. Flynn MR, Susi P (2012) Local exhaust ventilation for the control of welding fumes in the construction industry–a literature review. Ann Occup Hyg 56(7):764–776

    Article  Google Scholar 

  23. Froggett SJ, Clancy SF, Boverhof DR, Canady RA (2014) A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 11:17

    Article  Google Scholar 

  24. Ge Z, Gao Z (2008) Applications of nanotechnology and nanomaterials in construction, first international conference on construction in developing countries (ICCIDC-I). Advancing and integrating construction education, research & practice, Karachi, 4–5 Aug 2008

  25. Gilbertson LM, Melnikov F, Wehmas LC, Anastas PT, Tanguay RL, Zimmerman JB (2015) Toward safer multi-walled carbon nanotube design: establishing a statistical model that relates surface charge and embryonic zebrafish mortality. Nanotoxicology 13:1–10

    Article  Google Scholar 

  26. Ging J, Tejerina-Anton R, Ramakrishnan G, Nielsen M, Murphy K, Gorham JM, Nguyen T, Orlov A (2014) Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications. Sci Total Environ 473–474:9–19

    Article  Google Scholar 

  27. Gohler D, Stintz M, Hillemann L, Vorbau M (2010) Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Ann Occup Hyg 54(6):615–624

    Article  Google Scholar 

  28. Golanski L, Gaborieau A, Guiot A, Uzu G, Chatenet J, Tardif F (2011) Characterization of abrasion-induced nanoparticle release from paints into liquids and air. J Phys: Conf Ser 304:012062

    Google Scholar 

  29. Gordon SC, Butala JH, Carter JM et al (2014) Workshop report: strategies for setting occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol 68(3):305–311

    Article  Google Scholar 

  30. Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  Google Scholar 

  31. Grieger KD, Jennifer HR, Money ES, Widder MW, van der Schalie WH, Beaulieu SM, Womack D (2015) A relative ranking approach for nano-enabled applications to improve risk-based decision making: a case study of Army materiel. Environ Syst Decis 35(1):42–53

    Article  Google Scholar 

  32. Grosse Y, Loomis D, Guyton KZ et al (2014) Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol 15(13):1427–1428

    Article  Google Scholar 

  33. Habert G (2013) Environmental impact of Portland cement production. In: Pacheco-Torgal F, Jalali S, Labrincha J, John VM (eds) Eco-efficient concrete. Woodhead Publishing Limited, Cambridge, pp 3–25

    Google Scholar 

  34. Hall RM, Achutan C, Sollberger R, McCleery RE, Rodriguez M (2013) Exposure assessment for roofers exposed to silica during installation of roof tiles. J Occup Environ Hyg 10(1):D6–D10

    Article  Google Scholar 

  35. Hansen SF, Gee D (2014) Adequate and anticipatory research on the potential hazards of emerging technologies: a case of myopia and inertia? J Epidemiol Community Health 68(9):890–895

    Article  Google Scholar 

  36. Hansen SF, Maynard A, Baun A, Tickner JA (2008) Late lessons from early warnings for nanotechnology. Nat Nanotechnol 3(8):444–447

    Article  Google Scholar 

  37. Hanus MJ, Harris AT (2013) Nanotechnology innovations for the construction industry. Prog Mater Sci 58(7):1056–1102

    Article  Google Scholar 

  38. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12):8269–8285

    Article  Google Scholar 

  39. Heitbrink WA, Lo LM, Dunn KH (2015) Exposure controls for nanomaterials at three manufacturing sites. J Occup Environ Hyg 12(1):16–28

    Article  Google Scholar 

  40. Hincapié I, Caballero-Guzman A, Hiltbrunner D, Nowack B (2015) Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Waste Manag 43:398–406

    Article  Google Scholar 

  41. Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and Earth systems. Science 319(5870):1631–1635

    Article  Google Scholar 

  42. Hubbs AF, Mercer RR, Benkovic SA et al (2011) Nanotoxicology–a pathologist’s perspective. Toxicol Pathol 39(2):301–324

    Article  Google Scholar 

  43. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2(3):395–402

    Article  Google Scholar 

  44. Iavicoli S, Rondinone BM, Boccuni F (2009) Occupational safety and health’s role in sustainable, responsible nanotechnology: gaps and needs. Hum Exp Toxicol 28(6–7):433–443

    Article  Google Scholar 

  45. International Agency for Research on Cancer (2010) IARC monographs on the evaluation of carcinogenic risks to humans vol 93: carbon black, titanium dioxide, and talc. International Agency for Research on Cancer, Lyon, pp 1–419

    Google Scholar 

  46. Jackson MD, Landis EN, Brune PF et al (2014) Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. Proc Natl Acad Sci U S A 111(52):18484–18489

    Article  Google Scholar 

  47. Jones W, Gibb A, Goodier C, Bust P, Jin J, Song M (2015) Nanomaterials in construction and demolition-how can we assess the risk if we don’t know where they are? J Phys: Conf Ser 617(1):012031

    Google Scholar 

  48. Kaiser JP, Roesslein M, Diener L, Wick P (2013) Human health risk of ingested nanoparticles that are added as multifunctional agents to paints: an in vitro study. PLoS One 8(12):e83215

    Article  Google Scholar 

  49. Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1(1):65–70

    Article  Google Scholar 

  50. Khatri M, Bello D, Gaines P, Martin J, Pal AK, Gore R, Woskie S (2013a) Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology 7(5):1014–1027

    Article  Google Scholar 

  51. Khatri M, Bello D, Pal AK et al (2013b) Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines. Part Fibre Toxicol 10:42

    Article  Google Scholar 

  52. Kolosnjaj-Tabi J, Just J, Hartman KB, Laoudi Y, Boudjemaa S, Alloyeau D, Szwarc H, Wilson LJ, Moussa F (2015) Anthropogenic carbon nanotubes found in the Airways of Parisian children. EBioMedicine 2(11):1697–1704

    Article  Google Scholar 

  53. Koponen IK, Jensen KA, Schneider T (2009) Sanding dust from nanoparticle-containing paints: physical characterisation. J Phys: Conf Ser 151(1):012048

    Google Scholar 

  54. Koponen IK, Jensen KA, Schneider T (2011) Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J Expo Sci Environ Epidemiol 21(4):408–418

    Article  Google Scholar 

  55. Kreyling WG, Semmler-Behnke M, Takenaka S, Moller W (2013) Differences in the biokinetics of inhaled nano- versus micrometer-sized particles. Acc Chem Res 46(3):714–722

    Article  Google Scholar 

  56. Krug HF (2014) Nanosafety research–are we on the right track? Angew Chem Int Ed Engl 53(46):12304–12319

    Google Scholar 

  57. Kulinowski K, Lippy B (2011) Training workers on risks of nanotechnology. US Department of Health and Human Services, National Institute of Environmental Health Sciences. https://tools.niehs.nih.gov/wetp/index.cfm?id=537

  58. Lee J, Mahendra S, Alvarez PJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7):3580–3590

    Article  Google Scholar 

  59. Lee JH, Kuk WK, Kwon M, Lee JH, Lee KS, Yu IJ (2012) Evaluation of information in nanomaterial safety data sheets and development of international standard for guidance on preparation of nanomaterial safety data sheets. Nanotoxicology 7(3):338–345

    Article  Google Scholar 

  60. Lehnert M, Pesch B, Lotz A et al (2012) Exposure to inhalable, respirable, and ultrafine particles in welding fume. Ann Occup Hyg 56(5):557–567

    Google Scholar 

  61. Levy L, Chaudhuri IS, Krueger N, McCunney RJ (2012) Does carbon black disaggregate in lung fluid? A critical assessment. Chem Res Toxicol 25(10):2001–2006

    Article  Google Scholar 

  62. Linak E, Schlag S, Kishi A (2002) Chemical economics handbook: Titanium dioxide, (marketing research report). SRI International, Menlo Park

    Google Scholar 

  63. Lippy B (2009) MSDSs fail to communicate the hazards of nanotechnology to workers. In: International perspectives on environmental nanotechnology: applications and implications conference proceedings volume 2—implications. U.S. Environmental Protection Agency, Chicago, 7–9 Oct 2008

  64. Liss GM, Petsonk EL, Linch KD (2010) The construction industry. In: Tarlo SM, Cullinan P, Nemery B (eds) Occupational and environmental lung diseases. Wiley, Hoboken, pp 273–289

    Google Scholar 

  65. López de Ipiña JM, Vaquero C, Boutry D et al (2015) Strategies, methods and tools for managing nanorisks in construction. J Phys: Conf Ser 617(1):012035

    Google Scholar 

  66. Lu S, Zhang W, Zhang R, Liu P, Wang Q, Shang Y, Wu M, Donaldson K, Wang Q (2015a) Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Part Fibre Toxicol 12:5

    Article  Google Scholar 

  67. Lu X, Miousse IR, Pirela SV, Melnyk S, Koturbash I, Demokritou P (2015b) Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology 4:1–11

    Google Scholar 

  68. Madl AK, Pinkerton KE (2009) Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol 39(8):629–658

    Article  Google Scholar 

  69. Madl AK, Plummer LE, Carosino C, Pinkerton KE (2014) Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 76:447–465

    Article  Google Scholar 

  70. Maier M, Hannebauer B, Holldorff H, Albers P (2006) Does lung surfactant promote disaggregation of nanostructured titanium dioxide? J Occup Environ Med 48(12):1314–1320

    Article  Google Scholar 

  71. Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444(7117):267–269

    Article  Google Scholar 

  72. Meeker JD, Cooper MR, Lefkowitz D, Susi P (2009) Engineering control technologies to reduce occupational silica exposures in masonry cutting and tuckpointing. Public Health Rep 124(Suppl 1):101–111

    Google Scholar 

  73. Meeker JD, Susi P, Flynn MR (2010) Hexavalent chromium exposure and control in welding tasks. J Occup Environ Hyg 7(11):607–615

    Article  Google Scholar 

  74. Mercer RR, Scabilloni JF, Hubbs AF et al (2013a) Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 10:33

    Article  Google Scholar 

  75. Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW (2013b) Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol 10:38

    Article  Google Scholar 

  76. Methner MM (2008) Engineering case reports. Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J Occup Environ Hyg 5(6):D63–D69

    Article  Google Scholar 

  77. Methner MM (2010) Effectiveness of a custom-fitted flange and local exhaust ventilation (LEV) system in controlling the release of nanoscale metal oxide particulates during reactor cleanout operations. Int J Occup Environ Health 16(4):475–487

    Article  Google Scholar 

  78. Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147

    Article  Google Scholar 

  79. Mora EP (2007) Life cycle, sustainability and the transcendent quality of building materials. Build Environ 42(3):1329–1334

    Article  Google Scholar 

  80. Mortensen LJ, Jatana S, Gelein R, De Benedetto A, De Mesy Bentley KL, Beck L, Elder A, DeLouise LA (2013) Quantification of quantum dot murine skin penetration with UVR barrier impairment. Nanotoxicology 7:10

    Article  Google Scholar 

  81. NIOSH (2009) Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials. Department of Health and Human Services (CDC/NIOSH), Cincinnati

    Google Scholar 

  82. NIOSH (2011) Current intelligence bulletin 63: occupational exposure to titanium dioxide. Department of Health and Human Services (CDC/NIOSH), Cincinnati

    Google Scholar 

  83. NIOSH (2013) Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. Department of Health and Human Services (CDC/NIOSH), Cincinnati

    Google Scholar 

  84. Noel A, Charbonneau M, Cloutier Y, Tardif R, Truchon G (2013) Rat pulmonary responses to inhaled nano-TiO2: effect of primary particle size and agglomeration state. Part Fibre Toxicol 10:48

    Article  Google Scholar 

  85. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59

    Article  Google Scholar 

  86. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437–445

    Article  Google Scholar 

  87. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  Google Scholar 

  88. Osmond-McLeod MJ, Poland CA, Murphy F et al (2011) Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Part Fibre Toxicol 8:15

    Article  Google Scholar 

  89. Pachego-Torgal F, Ding Y, Labrincha JA (2013) Nanoparticles for high performance concrete (HPC). In: Pacheco-Torgal F, Diamanti MV, Nazari A, Granqvist CG (eds) Nanotechnology in eco-efficient construction. Woodhead Publishing Limited, Cambridge, pp 38–52

    Google Scholar 

  90. Pfefferkorn FE, Bello D, Haddad G et al (2010) Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum. Ann Occup Hyg 54(5):486–503

    Article  Google Scholar 

  91. Pirela SV, Miousse IR, Lu X et al (2015a) Effects of laser printer-emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive analysis in human small airway epithelial cells, macrophages, and lymphoblasts. Environ Health Perspect. doi:10.1289/ehp.1409582

    Google Scholar 

  92. Pirela SV, Sotiriou GA, Bello D, Shafer M, Bunker KL, Castranova V, Thomas T, Demokritou P (2015b) Consumer exposures to laser printer-emitted engineered nanoparticles: a case study of life-cycle implications from nano-enabled products. Nanotoxicology. doi:10.3109/17435390.2014.976602

    Google Scholar 

  93. Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  Google Scholar 

  94. Project on Emerging Nanotechnologies (2013) Consumer products inventory. http://www.nanotechproject.org/cpi. Accessed on 17 March 2015

  95. Rana AK, Rana SB, Kumari A, Kiran V (2009) Significance of nanotechnology in construction engineering. Int J Recent Trends Eng 1(4):46

    Google Scholar 

  96. Rengasamy S, Eimer BC (2011) Total inward leakage of nanoparticles through filtering facepiece respirators. Ann Occup Hyg 55(3):253–263

    Article  Google Scholar 

  97. Ridi F, Fratini E, Baglioni P (2011) Cement: a two thousand year old nano-colloid. J Colloid Interface Sci 357(2):255–264

    Article  Google Scholar 

  98. Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39(5):106A–112A

    Article  Google Scholar 

  99. Rosenman KD, Reilly MJ, Henneberger PK (2003) Estimating the total number of newly-recognized silicosis cases in the United States. Am J Ind Med 44(2):141–147

    Article  Google Scholar 

  100. Saber AT, Koponen IK, Jensen KA, Jacobsen NR, Mikkelsen L, Moller P, Loft S, Vogel U, Wallin H (2012) Inflammatory and genotoxic effects of sanding dust generated from nanoparticle-containing paints and lacquers. Nanotoxicology 6(7):776–788

    Article  Google Scholar 

  101. Safe Work Australia (2010) An evaluation of MSDS and labels associated with the use of engineered nanomaterials. Safe Work Australia, Commonwealth of Australia, Canberra

    Google Scholar 

  102. SAS Institute Inc. (2011) SAS for Windows, Release 9.2. SAS Institute Inc., Cary, NC

    Google Scholar 

  103. Schneider M, Stracke F, Hansen S, Schaefer UF (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 1(4):197–206

    Article  Google Scholar 

  104. Schulte P, Geraci C, Zumwalde R, Hoover M, Kuempel E (2008) Occupational risk management of engineered nanoparticles. J Occup Environ Hyg 5(4):239–249

    Article  Google Scholar 

  105. Schulte PA, Geraci CL, Murashov V, Kuempel ED, Zumwalde RD, Castranova V, Hoover MD, Hodson L, Martinez KF (2014) Occupational safety and health criteria for responsible development of nanotechnology. J Nanopart Res 16:2153

    Article  Google Scholar 

  106. Shaffer R, Rengasamy S (2009) Respiratory protection against airborne nanoparticles: a review. J Nanopart Res 11(7):1661–1672

    Article  Google Scholar 

  107. Shannahan JH, Kodavanti UP, Brown JM (2012) Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 24(5):320–339

    Article  Google Scholar 

  108. Shepherd S, Woskie SR, Holcroft C, Ellenbecker M (2009) Reducing silica and dust exposures in construction during use of powered concrete-cutting hand tools: efficacy of local exhaust ventilation on hammer drills. J Occup Environ Hyg 6(1):42–51

    Article  Google Scholar 

  109. Shi C, Fernández-Jiménez A, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41(7):750–763

    Article  Google Scholar 

  110. Shvedova AA, Kapralov AA, Feng WH et al (2012) Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS One 7(3):e30923

    Article  Google Scholar 

  111. Shvedova AA, Yanamala N, Kisin ER et al (2014) Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol 306(2):L170–L182

    Article  Google Scholar 

  112. Simons J, Zimmer R, Vierboom C, Harlen I, Hertel R, Bol GF (2009) The slings and arrows of communication on nanotechnology. J Nanopart Res 11(7):1555–1571

    Article  Google Scholar 

  113. Smulders S, Luyts K, Brabants G, Landuyt KV, Kirschhock C, Smolders E, Golanski L, Vanoirbeek J, Hoet PH (2014) Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice. Toxicol Sci 141(1):132–140

    Article  Google Scholar 

  114. Som C, Nowack B, Krug HF, Wick P (2013) Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials. Acc Chem Res 46(3):863–872

    Article  Google Scholar 

  115. Sotiriou GA, Singh D, Zhang F, Wohlleben W, Chalbot MG, Kavouras IG, Demokritou P (2015) An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products. Environ Sci Nano 2(3):262–272

    Article  Google Scholar 

  116. Stockmann-Juvala H, Taxell P, Santonen T (2014) Formulating occupational exposure limits values (OELs) (inhalation & dermal). Finnish Institute of Occupational Health (FIOH), Scaffold Public Document SPD7. http://scaffold.eu-vri.eu/home.aspx?lan=230&tab=2633&pag=1566. Accessed 3 June 2015

  117. Susi P, Goldberg M, Barnes P, Stafford E (2000) The use of a task-based exposure assessment model (T-BEAM) for assessment of metal fume exposures during welding and thermal cutting. Appl Occup Environ Hyg 15(1):26–38

    Article  Google Scholar 

  118. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53 ± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33(1):105–116

    Article  Google Scholar 

  119. Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall AB (2015) How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 12:1–9

    Article  Google Scholar 

  120. U.S. EPA (2008) Study on increasing the usage of recovered mineral components in federally funded projects involving procurement of cement or concrete to address the safe, accountable, flexible, efficient transportation equity act: a legacy for users. U.S. Environmental Protection Agency, Washington, DC, EEPA530-R-08-007, 2008

  121. U.S. EPA (2010) Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen (final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/057F, 2010

  122. Väänänen V, Kanerva T, Viitanen A, Säämänen A, Stockmann-Juvala H (2014) Results of application of the Stoffenmanager Nano-tool in the construction work area. Finnish Institute of Occupational Health (FIOH). http://scaffold.eu-vri.eu/home.aspx?lan=230&tab=2633&pag=1566. Accessed 3 June 2015

  123. Valsami-Jones E, Lynch I (2015) NANOSAFETY. How safe are nanomaterials? Science 350(6259):388–389

    Article  Google Scholar 

  124. Vaquero C, Gelarza N, López de Ipiña JL et al (2015) Occupational exposure to nano-TiO2 in the life cycle steps of new depollutant mortars used in construction. J Phys: Conf Ser 617(1):012006

    Google Scholar 

  125. Varner KE, Rindfusz K, Gaglione A, Viveiros E (2010) Nano titanium dioxide environmental matters: State of the science literature review. Environmental Protection Agency, Washington, DC

    Google Scholar 

  126. von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology 8(6):605–630

    Article  Google Scholar 

  127. Wiesner MR, Lowry GV, Jones KL, Hochella MF Jr, Di Giulio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43(17):6458–6462

    Article  Google Scholar 

  128. Xia T, Kovochich M, Brant J et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  Google Scholar 

  129. Yang Y, Alvarez PJ (2015) Sub-lethal concentrations of silver nanoparticles stimulate biofilm development. Environ Sci Technol Lett. doi:10.1021/acs.estlett.5b00159

    Google Scholar 

  130. Zhu W, Bartos PJM, Porro A (2004) Application of nanotechnology in construction. Mat Struct 37(9):649–658

    Article  Google Scholar 

Download references

Acknowledgments

The National Institute for Occupational Safety and Health (NIOSH) supported this study through a cooperative agreement with CPWR—The Center for Construction Research and Training and NIOSH (Cooperative Agreement Number U60-OH009762). We express our appreciation to TSI Inc. for technical support with real-time instrumentation and to the United Union of Roofers, Waterproofers & Allied Workers for guidance on tool selection and work practices. Any mention of specific companies or products does not imply that they are endorsed or recommended by CPWR or NIOSH. Opinions expressed are those of the authors and do not necessarily represent the official views of CPWR or NIOSH.

Funding

This study was funded by the National Institute for Occupational Safety and Health (Cooperative Agreement Number U60-OH009762).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Lippy.

Ethics declarations

The Institutional Review Board of CPWR—The Center for Construction Research and Training approved the survey and exposure assessment activities conducted as part of this research. The authors declare that they have no conflict of interest.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2016_3352_MOESM1_ESM.docx

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

West, G.H., Lippy, B.E., Cooper, M.R. et al. Toward responsible development and effective risk management of nano-enabled products in the U.S. construction industry. J Nanopart Res 18, 49 (2016). https://doi.org/10.1007/s11051-016-3352-y

Download citation

Keywords

  • Construction industry
  • Nanomaterials
  • Exposure assessment
  • Risk communication
  • Engineering controls
  • Titanium dioxide
  • Environmental and health effects