Skip to main content
Log in

Experimental study on stimulated scattering of ZnO nanospheres dispersed in water

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The backward stimulated scattering (BSS) from ZnO nanospheres dispersed in water has been investigated experimentally by employing a Nd:YAG pulse laser with ~532 nm wavelength and ~8 ns pulse width as the pump laser source. The present results show that the BSS effect is uniquely and unequivocally different compared to other known stimulated scattering, such as stimulated Rayleigh scattering, stimulated Brillouin scattering, and stimulated Raman scattering, and it displays the characteristics of no frequency shift and threshold dependence on initial spontaneous Mie scattering seed source. These can be understood by means of the Mie scattering theory and a laser-induced stationary Bragg grating model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amini B, Chen F (1986) The stimulated Raman threshold: experiment. Phys Fluids 29:3864–3872

    Article  Google Scholar 

  • Bai J, Shi J, Ouyang M, Chen X, Gong W, Jing H, Liu J, Liu D (2008) Method for measuring the threshold value of stimulated Brillouin scattering in water. Opt Lett 33:1539–1541

    Article  Google Scholar 

  • Band YB, Julienne PS (1991) Population transfer by multiple stimulated Raman scattering. J Chem Phys 95:5681–5685

    Article  Google Scholar 

  • Boyd RW (2010) Nonlinear optics, third edition. Elsevier, Singapore

    Google Scholar 

  • Boyd RW, Rzazewski K (1990) Noise initiation of stimulated Brillouin scattering. Phys Rev A 42:5514–5521

    Article  Google Scholar 

  • Damzen MJ, Vlad VI, Babin V, Mocofanescu A (2003) Stimulated Brillouin scattering: fundamentals and applications. IOP Publishing, Bristol

    Book  Google Scholar 

  • Deng D, Gao W, Liao M, Duan Z, Cheng T, Suzuki T, Ohishi Y (2013) Negative group velocity propagation in a highly nonlinear fiber embedded in a stimulated Brillouin scattering laser ring cavity. Appl Phys Lett 103:251110

    Article  Google Scholar 

  • Dong YK, Bao X, Chen L (2009) Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization maintaining photonic crystal fiber. Opt Lett 34:2590–2592

    Article  Google Scholar 

  • Eckhardt G, Hellwarth RW, McClung FJ, Schwarz SE, Weiner D, Woodbury EJ (1962) Stimulated Raman scattering from organic liquids. Phys Rev Lett 9:455–457

    Article  Google Scholar 

  • He GS, Lu C, Zheng Q, Prasad PN (2005) Stimulated Rayleigh-Bragg scattering in two-photon absorbing media. Phys Rev A 71:043839

    Google Scholar 

  • He GS, Yong KT, Zhu J, Prasad PN (2012) Observation of stimulated Mie-Bragg scattering from large-size-gold nanorod suspension in water. Phys Rev A 85:043839

    Article  Google Scholar 

  • Herman RM, Gray MA (1967) Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids. Phys Rev Lett 19:824–828

    Article  Google Scholar 

  • Kaiser W, Maier M (1972) Stimulated Rayleigh, Brillouin and Raman spectroscopy. In: Arrecchi FT, Schulz-Dubois EO (eds) Laser handbook. American Elsevier Pub. Co., Amsterdam, p 1077

    Google Scholar 

  • Mack ME (1969) Stimulated thermal light scattering in the picosecond regime. Phys Rev Lett 22:13–15

    Article  Google Scholar 

  • Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 330:377–445

    Article  Google Scholar 

  • Pohl D, Reinhold I, Kaiser W (1968) Experimental observation of stimulated thermal Brillouin scattering. Phys Rev Lett 20:1141–1143

    Article  Google Scholar 

  • Rank DH, Cho CW, Foltz ND, Wiggins TA (1967) Stimulated thermal Rayleigh scattering. Phys Rev Lett 19:828–830

    Article  Google Scholar 

  • Rayleigh L (1899) On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Philos Mag 47:375–394

    Article  Google Scholar 

  • Robert RJ, William N, James SB, Scott M, Benjamin JS (2010) Distributed sensing using Rayleigh scattering polarization-maintaining fibres for transverse load sensing. Meas Sci Technol 21:094019

    Article  Google Scholar 

  • Shi J, Li G, Gong W, Bai J, Huang Y, Liu Y, Li S, Liu D (2007) A lidar system based on stimulated Brillouin scattering. Appl Phys B 86:177–179

    Article  Google Scholar 

  • Shi JL, Chen W, Mo XF, Liu J, He XD, Yang KC (2012) Experimental investigation on the competition between wide-band stimulated Brillouin scattering and forward stimulated Raman scattering in water. Opt Lett 37:2988–2990

    Article  Google Scholar 

  • Zhu T, Bao X, Chen L, Liang H, Dong Y (2010) Experimental study on stimulated Rayleigh scattering in optical fibers. Opt Express 18:22958–22963

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grants No. 41206084, No. 61177096, and No. 61465009) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiulin Shi or Xingdao He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wu, H., Yan, F. et al. Experimental study on stimulated scattering of ZnO nanospheres dispersed in water. J Nanopart Res 18, 23 (2016). https://doi.org/10.1007/s11051-016-3333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3333-1

Keywords

Navigation