Skip to main content
Log in

Tailoring the magnetic properties of cobalt-ferrite nanoclusters

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akdogan O, Li W, Balasubramanian B et al (2013) Effect of exchange interactions on the coercivity of SmCo 5 nanoparticles made by cluster beam deposition. Adv Funct Mater 23:3262–3267. doi:10.1002/adfm.201201353

    Article  Google Scholar 

  • Altbir D, d’Albuquerque e Castro J, Vargas P (1996) Magnetic coupling in metallic granular systems. Phys Rev B 54:R6823–R6826. doi:10.1103/PhysRevB.54.R6823

    Article  Google Scholar 

  • Blanco-Mantecón M, O’Grady K (2006) Interaction and size effects in magnetic nanoparticles. J Magn Magn Mater 296:124–133

    Article  Google Scholar 

  • Bueno-Baqués D, Medina-Boudrí A, Matutes-Aquino J (2001) Remanence properties of co-precipitated cobalt ferrite. J Magn Magn Mater 226:1412–1414

    Article  Google Scholar 

  • Büscher K, Helm CA, Gross C et al (2004) Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langmuir 20:2435–2444

    Article  Google Scholar 

  • Butter K, Philipse AP, Vroege GJ (2002) Synthesis and properties of iron ferrofluids. J Magn Magn Mater 252:1–3

    Article  Google Scholar 

  • Calero-DdelC VL, Rinaldi C (2007) Synthesis and magnetic characterization of cobalt-substituted ferrite (CoxFe3−xO4) nanoparticles. J Magn Magn Mater 314:60–67

    Article  Google Scholar 

  • Cao S-W, Zhu Y-J, Ma M-Y et al (2008) Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and g-Fe2O3: preparation and potential application in drug delivery. J Phys Chem C 112:1851–1856

    Article  Google Scholar 

  • Chithra M, Anumol CN, Sahu B, Sahoo SC (2016) Exchange spring like magnetic behavior in cobalt ferrite nanoparticles. J Magn Magn Mater 401:1–8. doi:10.1016/j.jmmm.2015.10.007

    Article  Google Scholar 

  • Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27:1140–1142

    Article  Google Scholar 

  • de Gomes JA, Sousa MH, Tourinho FA et al (2008) Synthesis of core-shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis. J Phys Chem C 112:6220–6227

    Article  Google Scholar 

  • Garza-Navarro MA, González-González VA, Torres-Castro A et al (2010a) Elaboration of superparamagnetic cobalt-ferrite nanocomposites from films of chitosan chelates. J Appl Polym Sci 117:785–792. doi:10.1002/app.31043

    Article  Google Scholar 

  • Garza-Navarro MA, Torres-Castro A, García-Gutiérrez DI et al (2010b) Synthesis of spinel-metal-oxide/biopolymer hybrid nanostructured materials. J Phys Chem C 114:17574–17579. doi:10.1021/jp106811w

    Article  Google Scholar 

  • Garza-Navarro MA, Reyes-Melo ME, González-González V et al (2012) Modeling of isochronal complex magnetic susceptibility of polymer-magnetic nanocomposites using fractional calculus. J Appl Polym Sci 123:2154–2161. doi:10.1002/app.34725

    Article  Google Scholar 

  • Herrmann IK, Grass RN, Mazunin D, Stark WJ (2009) Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater 21:3275–3281

    Article  Google Scholar 

  • Herzer G (1990) Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 26:1397–1402. doi:10.1109/20.104389

    Article  Google Scholar 

  • Iglesias Ò, Labarta A (2004) Role of surface disorder on the magnetic properties and hysteresis of nanoparticles. Phys B Condens Matter 343:286–292

    Article  Google Scholar 

  • Iglesias Ó, Labarta A (2005) Influence of surface anisotropy on the hysteresis of magnetic nanoparticles. J Magn Magn Mater 290–291:738–741

    Article  Google Scholar 

  • Knobel M, Socolovsky LM, Vargas JM (2004) Propiedades magnéticas y de transporte de sistemas nanocristalinos: conceptos básicos y aplicaciones a sistemas reales. Rev Mex Física E 50:8–28

    Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372

    Article  Google Scholar 

  • Kodama RH, Berkowitz AE, McNiff JEJ, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394–397

    Article  Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  Google Scholar 

  • Li J, Zeng H, Sun S et al (2004) Analyzing the structure of CoFe–Fe3O4 core-shell nanoparticles by electron imaging and diffraction. J Phys Chem B 108:14005–14008

    Article  Google Scholar 

  • Lin D, Nunes AC, Majkrzak CF, Berkowitz AE (1995) Polarized neutron study of the magnetization density distribution within a CoFe2O4 colloidal particle II. J Magn Magn Mater 145:343–348

    Article  Google Scholar 

  • López JL, Pfannes H-D, Paniago R et al (2008) Investigation of the static and dynamic magnetic properties of CoFe2O4 nanoparticles. J Magn Magn Mater 320:e327–e330

    Article  Google Scholar 

  • Ma Z, Cao C, Liu Q et al (2011) Designed synthesis and magnetic properties of Co hierarchical nanostructures. Mater Lett 65:1312–1315. doi:10.1016/j.matlet.2011.02.001

    Article  Google Scholar 

  • Ma J, Lin H, Li X et al (2014) Hierarchical porous bioactive glasses/PLGA-magnetic SBA-15 for dual-drug release. Mater Sci Eng C Mater Biol Appl 39:21–28. doi:10.1016/j.msec.2014.01.060

    Article  Google Scholar 

  • Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308:289–295

    Article  Google Scholar 

  • Mathew DS, Juang R-S (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65

    Article  Google Scholar 

  • Mayo PI, O’Grady K, Kelly PE et al (1991) A magnetic evaluation of interaction and noise characteristics of CoNiCr thin films. J Appl Phys 69:4733–4735

    Article  Google Scholar 

  • Nathani H, Misra RDK (2004) Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites. Mater Sci Eng, B 113:228–235

    Article  Google Scholar 

  • Peddis D, Orrù F, Ardu A et al (2012) Interparticle interactions and magnetic anisotropy in cobalt ferrite nanoparticles: influence of molecular coating. Chem Mater 24:1062–1071. doi:10.1021/cm203280y

    Article  Google Scholar 

  • Qiu P, Jensen C, Charity N et al (2010) Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. J Am Chem Soc 132:17724–17732. doi:10.1021/ja102138a

    Article  Google Scholar 

  • Salager JL (1993) Surfactantes en solución acuosa. Laboratorio FIRP, Universidad de los Andes, Mérida

  • Salager JL, Antón R (1998) Formulación HLB, PIT, R de Winsor, Segunda ed. Laboratorio FIRP, Universidad de los Andes, Mérida

  • Şimşek T, Akansel S, Özcan Ş (2012) Effect of hexane on magnetic blocking behavior of FePt nanoparticles. J Magn Magn Mater 324:3924–3928

    Article  Google Scholar 

  • Sun S, Zeng H, Robinson DB et al (2004) Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  Google Scholar 

  • Török G, Lebedev VT, Bica D et al (2006) Concentration and temperature effect in microstructure of ferrofluids. J Magn Magn Mater 300:e221–e224

    Article  Google Scholar 

  • Torres-Martínez NE, Garza-Navarro MA, Lucio-Porto R et al (2013) One-pot synthesis of magnetic hybrid materials based on ovoid-like carboxymethyl-cellulose/cetyltrimethylammonium-bromide templates. Mater Chem Phys 141:735–743. doi:10.1016/j.matchemphys.2013.06.001

    Article  Google Scholar 

  • Torres-Martínez NE, Garza-Navarro MA, García-Gutiérrez D et al (2014) Hybrid nanostructured materials with tunable magnetic characteristics. J Nanopart Res 16:2759. doi:10.1007/s11051-014-2759-6

    Article  Google Scholar 

  • Wang L, Luo J, Fan Q et al (2005) Monodispersed core–shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601

    Article  Google Scholar 

  • Wang Y, He J, Chen J et al (2012) Synthesis of monodisperse, hierarchically mesoporous, silica microspheres embedded with magnetic nanoparticles. ACS Appl Mater Interfaces 4:2735–2742. doi:10.1021/am300373y

    Article  Google Scholar 

  • Wohlfarth EP (1958) Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J Appl Phys 29:595–596

    Article  Google Scholar 

  • Zhu J, Bertram HN (1991) Self-organized behavior in thin-film recording media. J Appl Phys 69:4709–4711

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by CONACYT, project number 153482, and by PAICYT-UANL fund, project number IT686-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Garza-Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Vega, A.E., Garza-Navarro, M.A., Durán-Guerrero, J.G. et al. Tailoring the magnetic properties of cobalt-ferrite nanoclusters. J Nanopart Res 18, 18 (2016). https://doi.org/10.1007/s11051-016-3325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3325-1

Keywords

Navigation