Skip to main content
Log in

Double stabilization of nanocrystalline silicon: a bonus from solvent

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Double stabilization of the silicon nanocrystals was observed for the first time by 29Si and 13C MAS NMR spectroscopy. The role of solvent, 1,2-dimethoxyethane (glyme), in formation and stabilization of silicon nanocrystals as well as mechanism of modification of the surface of silicon nanocrystals by nitrogen-heterocyclic carbene (NHC) was studied in this research. It was shown that silicon nanocrystals were stabilized by the products of cleavage of the C–O bonds in ethers and similar compounds. The fact of stabilization of silicon nanoparticles with NHC ligands in glyme was experimentally detected. It was demonstrated that MAS NMR spectroscopy is rather informative for study of the surface of silicon nanoparticles but it needs very pure samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam F, Osman H, Hello KM (2009) The immobilization of 3-(chloropropyl)triethoxysilane onto silica by a simple one-pot synthesis. J Colloid Interface Sci 331:143–147

    Article  Google Scholar 

  • Arquier D, Calleja G, Cerveau G, Corriu RJP (2007) A new solution route for the synthesis of silicon nanoparticles presenting different surface substituents. C R Chimie 10:795–802

    Article  Google Scholar 

  • Aslanov LA, Zakharov VN, Zakharov MA, Kamyshny AL, Magdassi Sh, Yatsenko AV (2010) Stabilization of silicon nanoparticles by carbenes. Russ J Coord Chem 36:330–332

    Article  Google Scholar 

  • Aslanov LA, Zakharov VN, Yatsenko AV (2014) Sandwich-like flat freestanding silicon nanocrystals. Acta Crystallogr Sect A 70:C 945

    Article  Google Scholar 

  • Azzena U, Dettori G, Mascia I, Pisano L, Pittalis M (2007) Ion pairing effects on the regioselectivity of arylic versus benzylic C-O bond reductive cleavage: synthetic applications. Tetrahedron 63:11998–12006

    Article  Google Scholar 

  • Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kauzlarich SM (2002) Solution reduction synthesis of surface stabilized silicon nanoparticles. Chem Commun 17:1822–1823

    Article  Google Scholar 

  • Bourissou D, Guerret O, Gabbaie FP, Bertrand G (2000) Stable Carbenes. Chem Rev 100(1):39–91

    Article  Google Scholar 

  • Brandolini AJ, Hills DD (2000) NMR Spectra of Polymers and Polymer Additives. Marcel Dekker, New York

    Google Scholar 

  • Breitmaier E, Voelter W (1986) Carbon-13 NMR Spectroscopy. VCH, Weinheim

    Google Scholar 

  • Carduner KR, Carter RO III, Milberg ME, Crosbie GM (1987) Anal Chem 59:2794–2797

    Article  Google Scholar 

  • Carter RS, Harley SJ, Power PP, Augustine MP (2005) Use of NMR spectroscopy in the synthesis and characterization of air- and water-stable Silicon nanoparticles from porous silicon. Chem Mater 17:2932–2939

    Article  Google Scholar 

  • Diaz-Morales U, Bellussi G, Carati A, Millini R, Parker WO Jr, Rizzo C Jr (2006) Ethane–silica hybrid material with ordered hexagonal mesoporous structure. Microporous Mesoporous Mater 87:185–191

    Article  Google Scholar 

  • Engelhardt G, Michel D (1987) High resolution solid-state NMR of silicates and zeolites. Wiley, Chichester

    Google Scholar 

  • Faulkner RA, DiVerdi JA, Yang Y, Kobayashi T, Maciel GE (2013) The surface of nanoparticle silicon as studied by solid-state NMR. Materials 6:18–46

    Article  Google Scholar 

  • Giuliani JR, Harley SJ, Carter RS, Power PP, Augustine MP (2007) Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles. Solid State Nucl Magn Reson 32:1–10

    Article  Google Scholar 

  • Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  Google Scholar 

  • Grobelny Z, Stolarzewicz A, Maercker A, Krompiec S, Kasperczyk J, Rzepa J (2004) Decomposition of vinyl ethers by alkalide K, K (15-crown-5) via 2 organopotassium intermediates. J Organomet Chem 689:1580–1585

    Article  Google Scholar 

  • Haque RA, Iqbal MA, Asekunowo P, Abdul Majid AMS, Ahamed MBK, Umar MI, Al-Rawi S, Al-Suede FSR (2013a) Synthesis, structure, anticancer, and antioxidant activity of para-xylyl linked bis-benzimidazolium salts and respective dinuclear Ag(I) N-heterocyclic carbine complexes (Part-II). Med Chem Res 22:4663–4676

    Article  Google Scholar 

  • Haque RA, Nasri SF Iqbal MA, Al-Rawi SS, Jafari SF, Ahamed MBK, Abdul Majid AMS (2013b) Synthesis, characterization, and crystal structures of bisimidazolium salts and respective dinuclear Ag(I) N-heterocyclic carbine complexes: in vitro anticancer studies against “human colon cancer” and “breast cancer”. J Chem: Article number 804683

  • Hartman JS, Richardson MF, Sherriff BL, Winsborrow BG (1987) Magic angle spinning NMR studies of silicon carbide: polytypes, impurities, and highly inefficient spin-lattice relaxation. J Am Chem Soc 109:6059–6067

    Article  Google Scholar 

  • Kamyshny A, Zakharov VN, Zakharov MA, Yatsenko AV, Savilov SV, Aslanov LA, Magdassi S (2011) Photoluminescent silicon nanocrystals stabilized by ionic liquid. J Nanopart Res 13:1971–1978

    Article  Google Scholar 

  • Liu Q, Kauzlarich SM (2002) A new synthetic route for the synthesis of hydrogen terminated silicon nanoparticles. Mater Sci Eng B 96:72–75

    Article  Google Scholar 

  • Mayeri D, Phillips BL, Augustine MP, Kauzlarich SM (2001) NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the zintl salt, NaSi. Chem Mater 13:765–770

    Article  Google Scholar 

  • Olah GA, Hunadi RJ (1980) Organometallic chemistry. 17. 29Si and 13C NMR spectroscopic study of phenylsilyl anions. The question of Si-C pπ- pπ-electron delocalization and comparison with related carbanions. J Am Chem Soc 102:6989–6992

    Article  Google Scholar 

  • Orekhov AS, Savilov SV, Zakharov VN, Yatsenko AV, Aslanov LA (2014) The isolated flat silicon nanocrystals (2D structures) stabilized with perfluorophenyl ligands. J Nanopart Res 16: Article number: 2190

  • Pietrass T, Bifone A, Roth RD, Koch V-P, Alivisatos AP, Pines A (1996) 29Si high resolution solid state nuclear magnetic resonance spectroscopy of porous silicon. J Non-Cryst Solids 202:68–76

    Article  Google Scholar 

  • Ruso JM, Gravina AN, D’Elía NL, Messina PV (2013) Highly efficient photoluminescence of SiO2 and Ce–SiO2 microfibres and microspheres. Dalton Trans 42:7991–8000

    Article  Google Scholar 

  • Salman AW, Hague RA, Budagumpi S, Zetty ZH (2013) Coordination diversity of Ag(I) and Hg(II) towards symmetrically and non-symmetrically substituted imidazol-2-ylidenes: synthesis, crystal structures, nitrile reactivity, and Hofmann-type elimination studies. Polyhedron 49(1):200–206

    Article  Google Scholar 

  • Samandaray MK, Alauzun J, Gajan D, Kavitake S, Mehdi A, Veyre L, Lelli M, Lesage A, Emsley L, Coperet C, Thieuleux C (2013) Evidence for metal-surface interactions and their role in stabilizing well-defined immobilized Ru-NHC alkene metathesis catalysts. J Am Chem Soc 135:3193–3199

    Article  Google Scholar 

  • Sayari A, Hamoudi S, Yang Y, Moudrakovski IL, Ripmeester JR (2000) New insights into the synthesis, morphology, and growth of periodic mesoporous organosilicas. Chem Mater 12:3857–3863

    Article  Google Scholar 

  • Schraml J (1990) Silicon-29 NMR spectroscopy of trimethylsilyl tags. Progr Nucl Magn Reson Spectrosc 22:289–348

    Article  Google Scholar 

  • Shao WL, Shinar J, Gerstein BB, Li F, Lannin JS (1990) Magic-angle spinning 29Si NMR study of short-range order in a-Si. Phys Rev 41:9491–9494

    Article  Google Scholar 

  • Williams E A (1989) The Chemistry of Organic Silicon Compounds. Ed. Patai S, Rappoport Z. J. Wiley&Sons

  • Zanardi S, Parker WO, Carati A, Botti G, Montanari E (2013) On the thermal behaviour of the crystalline hybrid organic–inorganic aluminosilicate ECS-3. Microporous Mesoporous Mater 172:200–205

    Article  Google Scholar 

  • Zou J, Sanelle P, Pettigrew KA, Kauzlarich SM (2006) Size and spectroscopy of silicon nanoparticles prepared via reduction of SiCl4. J Cluster Sci 17:565–578

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Russian Foundation for Basic Research (Grant 15–03–06948) and Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Aslanov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolyagin, Y.G., Zakharov, V.N., Yatsenko, A.V. et al. Double stabilization of nanocrystalline silicon: a bonus from solvent. J Nanopart Res 18, 17 (2016). https://doi.org/10.1007/s11051-016-3322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3322-4

Keywords

Navigation