Skip to main content
Log in

Sheet-like Li3V2(PO4)3 nanocomposite coated by SiO2 + C with better electrochemical properties for lithium-ion batteries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Sheet-like Li3V2(PO4)3 nanocomposite coated by SiO2 + C layer was synthesized with one-step solid-state method. Dihydroxydiphenylsilane (DPSD) was used as the source of SiO2 and C. The sheet-like Li3V2(PO4)3 nanocomposite has a thickness in the range of 20–30 nm. Because of the SiO2 + C-coated layer and the sheet-like morphology, the Li3V2(PO4)3/(SiO2 + C) composites show better stability and higher capacity than pure Li3V2(PO4)3 material and granular Li3V2(PO4)3/(SiO2 + C) composites. The best sample, Li3V2(PO4)3/(SiO2 + C)(2:8), shows a discharge capacity of 193.7 mAh g−1 at 1C within the voltage range of 3.0–4.8 V and retains almost 90 % of the capacity after 50 cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amanieu H-Y, Rosato D, Sebastiani M, Massimi F, Lupascu DC (2014) Mechanical property measurements of heterogeneous materials by selective nanoindentation: application to LiMn2O4 cathode. Mater Sci Eng, A 593:92–102. doi:10.1016/j.msea.2013.11.044

    Article  Google Scholar 

  • Bini M, Ferrari S, Capsoni D, Massarotti V (2011) Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochim Acta 56(6):2648–2655. doi:10.1016/j.electacta.2010.12.011

    Article  Google Scholar 

  • Chen J-M, Hsu C-H, Lin Y-R, Hsiao M-H, Fey GT-K (2008) High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries. J Power Sources 184(2):498–502. doi:10.1016/j.jpowsour.2008.04.022

    Article  Google Scholar 

  • Chen L, Yan B, Xie Y, Wang S, Jiang X, Yang G (2014a) Preparation and electrochemical properties of Li3V1.8Mn0.2(PO4)3 doped via different Mn sources. J Power Sources 261:188–197. doi:10.1016/j.jpowsour.2014.03.061

    Article  Google Scholar 

  • Cheng B, Zhang X-D, Ma X-H, Wen J-W, Yu Y, Chen C-H (2014b) Nano- Li3V2(PO4)3 enwrapped into reduced graphene oxide sheets for lithium-ion batteries. J Power Sources 265:104–109. doi:10.1016/j.jpowsour.2014.04.046

    Article  Google Scholar 

  • Cho AR, Son JN, Aravindan V, Kim H, Kang KS, Yoon WS, Lee YS (2012c) Carbon supported, Al doped- Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. J Mater Chem 22(14):6556–6560. doi:10.1039/c2jm00022a

    Article  Google Scholar 

  • Deng C, Zhang S, Yang SY, Gao Y, Wu B, Ma L, Liu FL (2011) Effects of Ti and Mg codoping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries. J Phys Chem C 115(30):15048–15056. doi:10.1021/jp201686g

    Article  Google Scholar 

  • Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954. doi:10.1016/j.jpowsour.2009.08.089

    Article  Google Scholar 

  • Han D-W, Lim S-J, Kim Y-I, Kang SH, Lee YC, Kang Y-M (2014) Facile lithium ion transport through superionic pathways formed on the surface of Li3V2(PO4)3/C for high power Li ion battery. Chem Mater 26(12):3644–3650. doi:10.1021/cm500509q

    Article  Google Scholar 

  • Hao H, Wang J, Liu J, Huang T, Yu A (2012) Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries. J Power Sources 210:397–401. doi:10.1016/j.jpowsour.2011.11.066

    Article  Google Scholar 

  • Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242. doi:10.1016/j.jpowsour.2013.03.024

    Article  Google Scholar 

  • Jian Z, Han W, Lu X, Yang H, Hu Y-S, Zhou J, Chen L (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3(2):156–160. doi:10.1002/aenm.201200558

    Article  Google Scholar 

  • Jiang T, Pan W, Wang J, Bie X, Du F, Wei Y, Chen G (2010) Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method. Electrochim Acta 55(12):3864–3869. doi:10.1016/j.electacta.2010.02.026

    Article  Google Scholar 

  • Kim J, Yoo J-K, Jung YS, Kang K (2013) Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv Energy Mater 3(8):1004–1007. doi:10.1002/aenm.201300205

    Article  Google Scholar 

  • Lai C, Chen Z, Zhou H, Lu Y, Li H (2015a) Mn-doped Li3V2(PO4)3 nanocrystal with enhanced electrochemical properties based on aerosol synthesis method. J Mater Sci 50:3075–3082. doi:10.1007/s10853-015-8867-6

    Google Scholar 

  • Lai C, Wei J, Wang Z, Xu Q, Lu Y, Li H (2015b) Li3V2(PO4)3/(SiO2 + C) composite with better stability and electrochemical properties for lithium-ion batteries. Solid State Ionics 272:121–126. doi:10.1016/j.ssi.2015.01.011

    Article  Google Scholar 

  • Li G, Jiang D, Wang H, Lan X, Zhong H, Jiang Y (2014) Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. J Power Sources 265:325–334. doi:10.1016/j.jpowsour.2014.04.054

    Article  Google Scholar 

  • Liu H, Gao P, Fang J, Yang G (2011) Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem Commun (Camb) 47(32):9110–9112. doi:10.1039/c1cc12941d

    Article  Google Scholar 

  • Liu S, Xu J, Li D, Hu Y, Liu X, Xie K (2013) High capacity Li2MnSiO4/C nanocomposite prepared by sol–gel method for lithium-ion batteries. J Power Sources 232:258–263. doi:10.1016/j.jpowsour.2012.12.126

    Article  Google Scholar 

  • Mateyshina YG, Uvarov NF (2011) Electrochemical behavior of Li3 − xM′xV2 − yM″y(PO4)3 (M′ = K, M″ = Sc, Mg + Ti)/C composite cathode material for lithium-ion batteries. J Power Sources 196(3):1494–1497. doi:10.1016/j.jpowsour.2010.08.078

    Article  Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194. doi:10.1149/1.1837571

    Article  Google Scholar 

  • Prabu M, Selvasekarapandian S, Reddy MV, Chowdari BVR (2012) Impedance studies on the 5-V cathode material, LiCoPO4. J Solid State Electrochem 16(5):1833–1839. doi:10.1007/s10008-012-1670-2

    Article  Google Scholar 

  • Qiao YQ, Wang XL, Mai YJ, Xiang JY, Zhang D, Gu CD, Tu JP (2011) Synthesis of plate-like Li3V2(PO4)3/C as a cathode material for Li-ion batteries. J Power Sources 196(20):8706–8709. doi:10.1016/j.jpowsour.2011.06.056

    Article  Google Scholar 

  • Qiao YQ, Tu JP, Wang XL, Gu CD (2012a) The low and high temperature electrochemical performances of Li3V2(PO4)3/C cathode material for Li-ion batteries. J Power Sources 199:287–292. doi:10.1016/j.jpowsour.2011.10.054

    Article  Google Scholar 

  • Qiao YQ, Wang XL, Mai YJ, Xia XH, Zhang J, Gu CD, Tu JP (2012b) Freeze-drying synthesis of Li3V2(PO4)3/C cathode material for lithium-ion batteries. J Alloy Compd 536:132–137. doi:10.1016/j.jallcom.2012.04.118

    Article  Google Scholar 

  • Ren M, Zhou Z, Li Y, Gao XP, Yan J (2006) Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J Power Sources 162(2):1357–1362. doi:10.1016/j.jpowsour.2006.08.008

    Article  Google Scholar 

  • Ren MM, Zhou Z, Gao XP, Peng WX, Wei JP (2008) Core-shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J Phys Chem C 112(14):5689–5693. doi:10.1021/jp800040s

    Article  Google Scholar 

  • Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38. doi:10.1016/j.jpowsour.2014.01.126

    Article  Google Scholar 

  • Sun C, Rajasekhara S, Dong Y, Goodenough JB (2011) Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries. ACS Appl Mater Interfaces 3(9):3772–3776. doi:10.1021/am200987y

    Article  Google Scholar 

  • Teng F, Hu Z-H, Ma X-H, Zhang L-C, Ding C-X, Yu Y, Chen C-H (2013) Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochim Acta 91:43–49. doi:10.1016/j.electacta.2012.12.090

    Article  Google Scholar 

  • Wang D, Gao M, Pan H, Wang J, Liu Y (2014a) High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J Power Sources 256:190–199. doi:10.1016/j.jpowsour.2013.12.128

    Article  Google Scholar 

  • Wang S, Zhang Z, Deb A, Yang L, Hirano S-I (2014b) Synthesis, characterization, and electrochemical performance of Ce-doped ordered macroporous Li3V2(PO4)3/C cathode materials for lithium ion batteries. Ind Eng Chem Res 53:19525–19532. doi:10.1021/ie502917b

    Google Scholar 

  • Wang S, Zhang Z, Jiang Z, Deb A, Yang L, Hirano S-I (2014c) Mesoporous Li3V2(PO4)3@CMK-3 nanocomposite cathode material for lithium ion batteries. J Power Sources 253:294–299. doi:10.1016/j.jpowsour.2013.12.080

    Article  Google Scholar 

  • Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Zhang Q (2014) One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett 14(2):1042–1048. doi:10.1021/nl404709b

    Article  Google Scholar 

  • Wu F, Wang F, Wu C, Bai Y (2012) Rate performance of Li3V2(PO4)3/C cathode material and its Li+ ion intercalation behavior. J Alloy Compd 513:236–241. doi:10.1016/j.jallcom.2011.10.028

    Article  Google Scholar 

  • Yin S-C, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical property: structure relationships in monoclinic Li3-yV2(PO4)3. J Am Chem Soc 125(34):10402–10411. doi:10.1021/ja034565h

    Article  Google Scholar 

  • Zhang L-L, Liang G, Peng G, Zou F, Huang Y-H, Croft MC, Ignatov A (2012) Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116(23):12401–12408. doi:10.1021/jp301127r

    Article  Google Scholar 

  • Zhang L-L, Liang G, Peng G, Jiang Y, Fang H, Huang Y-H, Ignatov A (2013) Evolution of electrochemical performance in Li3V2(PO4)3/C composites caused by cation incorporation. Electrochim Acta 108:182–190. doi:10.1016/j.electacta.2013.06.071

    Article  Google Scholar 

  • Zhang R, Zhang Y, Zhu K, Du F, Fu Q, Yang X, Wei Y (2014) Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 6(15):12523–12530. doi:10.1021/am502387z

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (51402187, 20825724 and 21237003), and the Science and Technology Commission of Shanghai Municipality (No: 14DZ2261000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, C., Wu, T. & Wang, Z. Sheet-like Li3V2(PO4)3 nanocomposite coated by SiO2 + C with better electrochemical properties for lithium-ion batteries. J Nanopart Res 18, 6 (2016). https://doi.org/10.1007/s11051-015-3317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3317-6

Keywords

Navigation