Skip to main content
Log in

Preparation and characterization of Y-Fe alloy nanowires by template-assisted electrodeposition from aqueous solution

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, a method was proposed for the preparation of Y-Fe alloy nanowires by PC membrane template-assisted electrodeposition from aqueous solution. Citric acid  acted as complexing agent was used into the solution to fabricate Y-Fe alloy nanowires. The electrolyte solution consisted of 5 g L−1 YCl3, 12.5 g L−1 FeSO·6H2O, different concentrations of citric acid , 25 g L−1 boric acid in deionized water. The energy dispersive spectroscopy (EDS) found that the content of Y in the nanowires can be controlled by citric acid concentration and the current intensity, and the content of Y could reach up to 33.16 wt%. Scanning electron microscopy (SEM), BET specific surface area (BET), and X-ray diffraction (XRD) showed that there was a shift in the structure of nanowires from semicrystalline to amorphous due to the change of Y content, and their shapes were approximately 100 nm in diameter and 6 μm in length; the surface areas of nanowires were about 3.97 m2/g. Fourier transform infrared (FTIR) spectroscopy, UV–Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS) indicated the formation of Y-Fe alloy, Y2Oand Fe2O  existed  in the outer layer of nanowires. The magnetic field applied both parallel and perpendicular to the nanowires by alternating gradient magnetometer (AGM) showed small magnetic anisotropy and low coercivity with easy axis of magnetization perpendicular to the nanowires. In addition, the magneto-optic Kerr effect (MOKE) was investigated, and a Kerr rotation angle of 29 mdeg was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Babu PR, Bhaumik I, Ganesamoorthy S, Kalainathan S, Bhatt R, Karnal AK, Gupta PK (2015) Investigation of magnetic property of GdFeO3 single crystal grown in air by optical floating zone technique. J Alloy Compd 631:232–236

    Article  Google Scholar 

  • Brar HS, Berglund IS, Allen JB, Manuel MV (2014) The role of surface oxidation on the degradation behavior of biodegradable Mg-RE (Gd, Y, Sc) alloys for resorbable implants. Mater Sci Eng C 40:407–417

    Article  Google Scholar 

  • Cai H et al (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. Acs Appl Mater Inter 5:1722–1731

    Article  Google Scholar 

  • Choi JR, Oh SJ, Ju H, Cheon J (2005) Massive fabrication of free-standing one-dimensional Co/Pt nanostructure and modulation of ferromagnetism via programmable barcode layer effect. Nano Lett 5:2179–2183

    Article  Google Scholar 

  • Crisan O, Angelakeris M, Simeonidis K, Kehagias T, Komninou P, Giersig M, Flevaris NK (2006) Structure effects on the magnetism of AgCo nanoparticles. Acta Mater 54:5251–5260

    Article  Google Scholar 

  • Dasgupta NP et al (2014) 25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications. Adv Mater 26:2137–2184

    Article  Google Scholar 

  • Gao XY, Tan SC, Wee ATS, Wu JH, Kong LB, Yu XJ, Moser HO (2006) Structural and magnetic characterization of soft-magnetic FeCo alloy nanoparticles. J Electron Spectrosc 150:11–14

    Article  Google Scholar 

  • Huang LM, Wang HT, Wang ZB, Mitra A, Bozhilov KN, Yan YS (2002) Nanowire arrays electrodeposited from liquid crystalline phases. Adv Mater 14:61–64

    Article  Google Scholar 

  • Ilayaraja M, John Berchmans L, Sankaranarayanan SR (2014) Preparation of rare earth - transition metal (RE: Y, TM: Co) intermetallic compounds by calciothermic reduction diffusion process. Assoc Metall Eng Serbia 20:35–40

    Google Scholar 

  • Iorgu AI, Maxim F, Matei C, Ferreira LP, Ferreira P, Cruz MM, Berger D (2015) Fast synthesis of rare-earth (Pr3+, Sm3+, Eu3+ and Gd3+) doped bismuth ferrite powders with enhanced magnetic properties. J Alloy Compd 629:62–68

    Article  Google Scholar 

  • Khan MA et al (2015) Structural and magnetic behavior evaluation of Mg-Tb ferrite/polypyrrole nanocomposites. Ceram Int 41:651–656

    Article  Google Scholar 

  • Kishimoto M, Minagawa M, Yanagihara H, Oda T, Ohkochi N, Kita E (2012) Synthesis and magnetic properties of platelet γ-Fe2O3 particles for medical applications using hysteresis-loss heating. J Magn Magn Mater 324:1285–1289

    Article  Google Scholar 

  • Li GR, Ke QF, Zhang ZS, Dawa CR, Liu P, Liu GK, Tong YX (2007) Synthesis of Ce-Fe intermetallic compounds with foam structures via electrochemical deposition. Chem Mater 19:2283–2287

    Article  Google Scholar 

  • Li GR, Zhang ZS, Su CY, Tong YX (2009a) Electrochemical synthesis of Tb-Co alloy nanoparticle aggregates and their magnetic. J Phys Chem C 113:1227–1234

    Article  Google Scholar 

  • Li JX, Lai H, Fan BQ, Zhuang B, Guan LH, Huang ZG (2009b) Electrodeposition of RE–TM (RE = La, Sm, Gd; TM = Fe Co, Ni) films and magnetic properties in urea melt. J Alloy Compd 477:547–551

    Article  Google Scholar 

  • Li XZ, Wei XW, Ye Y (2009c) A simple method for forming amorphous rare earth-transition metal alloy nanotube arrays. J Non-Cryst Solids 355:2233–2238

    Article  Google Scholar 

  • Liang HP, Guo YG, Hu JS, Zhu CF, Wan LJ, Bai CL (2005) Ni-Pt multilayered nanowire arrays with enhanced coercivity and high remanence ratio. Inorg Chem Commun 44:3013–3015

    Article  Google Scholar 

  • Liu Y, Goebl J, Yin Y (2013a) Templated synthesis of nanostructured materials. Chem Soc Rev 42:2610–2653

    Article  Google Scholar 

  • Liu Y, Ruan Y, Song L, Dong W, Li C (2013b) Morphology-controlled synthesis of Y2O3:Eu3+ and the photoluminescence property. J Alloy Compd 581:590–595

    Article  Google Scholar 

  • Lo SHY, Wang Y-Y, Wan C-C (2007) Synthesis of PVP stabilized Cu/Pd nanoparticles with citrate complexing agent and its application as an activator for electroless copper deposition. J Colloid Interf Sci 310:190–195

    Article  Google Scholar 

  • Lokhande CD, Jadhav MS, Pawer SH (1988) Electrodeposition of lanthanum from aqueous baths. J Metal Finishing 11:53–54

    Google Scholar 

  • Ma H, Ma E, Xu J (2003) A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability. J Mater Res 18:2288–2291

    Article  Google Scholar 

  • Maksymov IS, Hutomo J, Kostylev M (2014) Transverse magneto-optical Kerr effect in subwavelength dielectric gratings. Opt Express 22:8720–8725

    Article  Google Scholar 

  • Mazur M et al (2013) Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors. Nanoscale 5:2692–2702

    Article  Google Scholar 

  • Mishra R, Podlaha EJ (2006) Fabrication of rare earth-transition metal alloy nanowires and nanotubes. ECS Trans 23:9–16

    Google Scholar 

  • Mohamed MM, Khairou KS (2011) Fabrication and characterization of bimetallic Pt-Au nanowires supported on FSM-16 and their catalytic activities toward water-gas shift reaction. J Colloid Interf Sci 354:100–108

    Article  Google Scholar 

  • Narayanan TN, Shaijumon MM, Ci L, Ajayan PM, Anantharaman MR (2008) On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties. Nano Res 1:456–473

    Article  Google Scholar 

  • Niaz Akhtar M et al (2014) Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J Magn Magn Mater 368:393–400

    Article  Google Scholar 

  • Pang ML, Lin J, Cheng ZY, Fu J, Xing RB, Wang SB (2003) Patterning and luminescent properties of nanocrystalline Y2O3:Eu3+ phosphor films by sol-gel soft lithography. Mat Sci Eng B-Solid 100:124–131

    Article  Google Scholar 

  • Park SH, Shin HS, Kim YH, Park HM, Song JY (2013) Template-free and filamentary growth of silver nanowires: application to anisotropic conductive transparent flexible electrodes. Nanoscale 5:1864–1869

    Article  Google Scholar 

  • Praveena K, Sadhana K, Srinath S, Murthy SR (2014) Effect of pH on structural and magnetic properties of nanocrystalline Y3Fe5O12 by aqueous co-precipitation method. Mater Res Innovations 18:69–75

    Article  Google Scholar 

  • Racu A, Ursu D, Kuliukova O, Logofatu C, Leca A, Miclau M (2015) Direct low temperature hydrothermal synthesis of YFeO3 microcrystals. Mater Lett 140:107–110

    Article  Google Scholar 

  • Reddy KR, Lee K-P, Gopalan AY, Kang H-D (2007) Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization. React Funct Polym 67:943–954

    Article  Google Scholar 

  • Reddy KR, Lee K-P, Kim JY, Lee Y (2008a) Self-Assembly and graft polymerization route to monodispersed Fe3O4@SiO2-Polyaniline core-shell composite nanoparticles: physical properties. J Nanosci Nanotechnol 8:5632–5639

    Article  Google Scholar 

  • Reddy KR, Lee KP, Gopalan AI (2008b) Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf a-Physicochem Eng Asp 320:49–56

    Article  Google Scholar 

  • Reddy KR et al (2008c) A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles Scripta. Mater 58:1010–1013

    Google Scholar 

  • Reddy KR, Park W, Sin BC, Noh J, Lee Y (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interf Sci 335:34–39

    Article  Google Scholar 

  • Reddy SM, Park JJ, Na S-M, Maqableh MM, Flatau AB, Stadler BJH (2011) Electrochemical Synthesis of Magnetostrictive Fe-Ga/Cu Multilayered Nanowire Arrays with Tailored Magnetic Response. Adv Funct Mater 21:4677–4683

    Article  Google Scholar 

  • Reichl I, Zabloudil J, Hammerling R, Vernes A, Szunyogh L, Weinberger P (2006) Magneto-optical Kerr effect in perpendicularly magnetized (Co2Pt6)n/Pt(111) superstructures. Phys Rev B 73:054402–054401–054402-054406

    Article  Google Scholar 

  • Schlörb H, Haehnel V, Khatri MS, Srivastav A, Kumar A, Schultz L, Fähler S (2010) Magnetic nanowires by electrodeposition within templates. Phys Status Solid B 247:2364–2379

    Article  Google Scholar 

  • Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY (2011) Magnetic nanoparticles recent advances in synthesis, self-assembly and applications. J Mater Chem 21:16819–16845

    Article  Google Scholar 

  • Sivakumar S, Anusuya D, Khatiwada CP, Sivasubramanian J, Venkatesan A, Soundhirarajan P (2014) Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route. Spectrochim Acta Part A Mol Biomol Spectrosc 128:69–75

    Article  Google Scholar 

  • Su YK, Tang JN, Yang HT, Cheng ZH (2013) Multifunctional multisegmented Co/CoPt3 heterostructure nanowires. Nanoscale 5:9709–9713

    Article  Google Scholar 

  • Taşaltın N, Öztürk S, Kılınç N, Yüzer H, Öztürk ZZ (2011) Fabrication of Pd–Fe nanowires with a high aspect ratio by AAO template-assisted electrodeposition. J Alloy Compd 509:3894–3898

    Article  Google Scholar 

  • Tc Goto, Onbaşlı MC, Ross CA (2012) Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits. Opt Express 20:28507–28517

    Article  Google Scholar 

  • Thongmee S, Pang HL, Ding J, Lin JY (2009) Fabrication and magnetic properties of metallic nanowires via AAO templates. J Magn Magn Mater 321:2712–2716

    Article  Google Scholar 

  • Tian F, Zhu J, Wei D (2007) Fabrication and magnetism of radial-easy-magnetized Ni nanowire arrays. J Phys Chem C 111:12669–12672

    Article  Google Scholar 

  • Tihay F, Pourroy G, Richard-Plouet M, Roger A, Kiennemann A (2001) Effect of Fischer-Tropsch synthesis on the microstructure of Fe–Co-based metal/spinel composite materials. Appl Catal A 206:29–42

    Article  Google Scholar 

  • Vieyra M, Borza F, Meydan T (2008) Effect of boron concentration on the magnetic properties of (FeCoNi) 100−x B x (x = 15 and 20 wt%) nanowire arrays. J Magn Magn Mater 320:e712–e715

    Article  Google Scholar 

  • Wang Q et al (2013) Hierarchical structure based on Pd(Au) nanoparticles grafted onto magnetite cores and double layered shells: enhanced activity for catalytic applications. J Mater Chem A 1:12732–12741

    Article  Google Scholar 

  • Wang Q, Li Y, Liu B, Dong Q, Xu G, Zhang L, Zhang J (2015) Novel recyclable dual-heterostructured Fe3O4@CeO2/M (M = Pt, Pd and Pt-Pd) catalysts: synergetic and redox effects for superior catalytic performance. J Mater Chem A 3:139–147

    Article  Google Scholar 

  • Wei JC, Schwartz M, Nobe K (2008) Electrodeposition of Sm-Co Permanent Magnets from Aqueous Media. ECS Trans 11:53–64

    Article  Google Scholar 

  • X-f Long, G-h Guo, X-h Li, Q-l Xia, J-f Zhang (2013) Electrodeposition of Sm–Co film with high Sm content from aqueous solution. Thin Solid Films 548:259–262

    Article  Google Scholar 

  • Xia YN et al (2003) One-dimensional nanostructures: synthesis, characterization, and application. Adv Mater 15:353–389

    Article  Google Scholar 

  • Xu W et al (2015) Effects of aluminum substitution on the crystal structure and magnetic properties in Zn2Y-type hexaferrites. J Appl Phys. doi:10.1063/1.4913889

    Google Scholar 

  • Xue SH, Cao CB, Wang DZ, Zhu HS (2005) Synthesis and magnetic properties of Fe0.32Ni0.68 alloy nanotubes. Nanotechnology 16:1495–1499

    Article  Google Scholar 

  • Zaremba VI, Kaczorowsk D, Rodewald UC, Hoffmann RD, Pöttgen R (2004) LaPdIn2 with MgCuAl2 and REPdIn2(RE = Y, Pr, Nd, Sm, Ga-Tm, Lu) with HfNiGa2-type structure: synthesis, structure, and physical properties. Chem Mater 16:466–476

    Article  Google Scholar 

Download references

Acknowledgments

This project was generously supported by the National Natural Science Foundation of China (No. 51162020 and No. 20763004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShouHong Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Han, L., Zhang, Y. et al. Preparation and characterization of Y-Fe alloy nanowires by template-assisted electrodeposition from aqueous solution. J Nanopart Res 18, 67 (2016). https://doi.org/10.1007/s11051-015-3295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3295-8

Keywords

Navigation