Skip to main content
Log in

Effect of ligand exchange of Cu2ZnSnS4 nanocrystals on the charge transport and photovoltaic performance of nanostructured depleted bulk heterojunction solar cell

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) nanocrystals combining the advantage of feasible solution-phase synthesis and processing are perceived as promising materials for application in efficient, low-cost photovoltaic technology. Herein, we have got surfactant-free CZTS nanocrystals by a novel ligand exchange method, and the obtained CZTS nanocrystals were deposited onto ZnO nanorod arrays to construct depleted bulk heterojunction solar cell. The all-inorganic CZTS nanocrystal solar cells demonstrated a remarkable improvement in J sc (from 8.14 to 13.97 mA/cm2) and power conversion efficiency (from 1.83 to 3.34 %) compared with surfactant-capped CZTS nanocrystals. Using surface photovoltage spectrum, the influence of ligand exchange of CZTS nanocrystals on the charge transport and photovoltaic performance of the nanostructured CZTS solar cells was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad R, Distaso M, Azimi H, Brabec CJ, Peukert W (2013) Facile synthesis and post- processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles. J Nanopart Res 15:1886–1901

    Article  Google Scholar 

  • Baxter JB, Walker AM, Kv Ommering, Aydil ES (2006) Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 17:S304–S312

    Article  Google Scholar 

  • Bucherl CN, Oleson KR, Hillhouse HW (2013) Thin film solar cells from sintered nanocrystals. Curr Opin Chem Eng 2:168–177

    Article  Google Scholar 

  • Carrete A, Shavel A, Fontane X, Montserrat J, Fan J, Ibanez M, Saucedo E, Perez-Rodriguez A, Cabot A (2013) Antimony-based ligand exchange to promote crystallization in spray-deposited Cu2ZnSnSe4 solar cells. J Am Chem Soc 135:15982–15985

    Article  Google Scholar 

  • Chang YC, Yang WC, Chang CM, Hsu PC, Chen LJ (2009) Controlled growth of ZnO nanopagoda arrays with varied lamination and apex angles. Cryst Growth Des 9:3161–3167

    Article  Google Scholar 

  • Chernomordik BD, Béland AE, Trejo ND, Gunawan AA, Deng DD, Mkhoyan KA, Aydil ES (2014) Rapid facile synthesis of Cu2ZnSnS4 nanocrystals. J Mater Chem A 2:10389

    Article  Google Scholar 

  • He M, Zheng D, Wang M, Lin C, Lin Z (2014) High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction. J Mater Chem A 2:5994–6003

    Article  Google Scholar 

  • Jean J, Chang S, Brown PR, Cheng JJ, Rekemeyer PH, Bawendi MG, Gradecak S, Bulovic V (2013) ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv Mater 25:2790–2796

    Article  Google Scholar 

  • Jiang M, Wu J, Di G, Li G (2014) Nanostructured solar cell based on solution processed Cu2ZnSnS4 nanoparticles and vertically aligned ZnO nanorod array. Phys Status Solidi (RRL) 8:971–975

    Article  Google Scholar 

  • Kovalenko MV, Scheele M, Talapin DV (2009) Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324:1417–1420

    Article  Google Scholar 

  • Lauth J, Marbach J, Meyer A, Dogan S, Klinke C, Kornowski A, Weller H (2014) Virtually bare nanocrystal surfaces: significantly enhanced electrical transport in CuInSe2 and CuIn1−x Ga x Se2 thin films upon ligand exchange with thermally degradable 1-ethyl-5-thiotetrazole. Adv Funct Mater 24:1081–1088

    Article  Google Scholar 

  • Lee D, Yong K (2014) Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods. Nanotechnology 25:065401

    Article  Google Scholar 

  • Liu Y, Yao D, Shen L, Zhang H, Zhang X, Yang B (2012) Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals. J Am Chem Soc 134:7207–7210

    Article  Google Scholar 

  • Liu X, Wang C, Xu J, Liu X, Zou R, Ouyang L, Xu X, Chen X, Xing H (2013a) Fabrication of ZnO/CdS/Cu2ZnSnS4 p–n heterostructure nanorod arrays via a solution-based route. CrystEngComm 15:1139–1145

    Article  Google Scholar 

  • Liu WC, Guo BL, Wu XS, Zhang FM, Mak CL, Wong KH (2013b) Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J Mater Chem A 1:3182–3186

    Article  Google Scholar 

  • Merdes S, Osterloh F, Sáez-Araoz R, Klaer J, Klenk R, Dittrich T (2013) Surface photovoltage analyses of Cu(In,Ga)S2/CdS and Cu(In,Ga)S2/In2S3 photovoltaic junctions. Appl Phys Lett 102(21). doi:10.1063/1.4807889

  • Nag A, Kovalenko MV, Lee JS, Liu W, Spokoyny B, Talapin DV (2011) Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS3 2−, OH, and NH2− as surface ligands. J Am Chem Soc 133:10612–10620

    Article  Google Scholar 

  • Ning ZJ, Ren Y, Hoogland S, Voznyy O, Levina L, Stadler P, Lan X, Zhitomirsky D, Sargent EH (2012) All-Inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv Mater 24:6295–6299

    Article  Google Scholar 

  • Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA (2009) Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J Am Chem Soc 131(125):54–12555

    Google Scholar 

  • Stolle CJ, Panthani MG, Harvey TB, Akhavan VA, Korgel BA (2012) Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals. ACS Appl Mater Interfaces 4:2757–2761

    Article  Google Scholar 

  • Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal- quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771

    Article  Google Scholar 

  • Thambidurai M, Muthukumarasamy N, Sabari Arul N, Agilan S, Balasundaraprabhu R (2011) CdS quantum dot-sensitized ZnO nanorod-based photoelectrochemical solar cells. J Nanopart Res 13:3267–3273

    Article  Google Scholar 

  • Tosun BS, Chernomordik BD, Gunawan AA, Williams B, Mkhoyan KA, Francis LF, Aydil ES (2013) Cu2ZnSnS4 nanocrystal dispersions in polar liquids. Chem Commun 49:3549–3551

    Article  Google Scholar 

  • Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2014a) Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater 4:1301465

    Google Scholar 

  • Wang W, Shen HL, He XC, Li JZ (2014b) Effects of sulfur sources on properties of Cu2ZnSnS4 nanoparticles. J Nanopart Res 16:2437–2444

    Article  Google Scholar 

  • Wang YX, Wei M, Fan FJ, Zhuang TT, Wu L, Yu SH, Zhu CF (2014c) Phase-selective synthesis of Cu2ZnSnS4 nanocrystals through cation exchange for photovoltaic devices. Chem Mater 26:5492–5498

    Article  Google Scholar 

  • Yuan M, Zhitomirsky D, Adinolfi V, Voznyy O, Kemp KW, Ning Z, Lan X, Xu J, Kim JY, Dong H, Sargent EH (2013) Doping control via molecularly engineered surface ligand coordination. Adv Mater 25:5586–5592

    Article  Google Scholar 

  • Zhang H, Hu B, Sun L, Hovden R, Wise FW, Muller DA, Robinson RD (2011) Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Lett 11:5356–5361

    Article  Google Scholar 

  • Zhong J, Xia Z, Zhang C, Li B, Liu X, Cheng YB, Tang J (2014) One-pot synthesis of self- stabilized aqueous nanoinks for Cu2ZnSn(S, Se)4 solar cells. Chem Mater 26:3573–3578

    Article  Google Scholar 

  • Zhou ZJ, Fan JQ, Wang X, Sun WZ, Zhou WH, Du ZL, Wu SX (2011) Solution fabrication and photoelectrical properties of CuInS2 nanocrystals on TiO2 nanorod array. ACS Appl Mater Interfaces 3:2189–2194

    Article  Google Scholar 

  • Zhou H, Hsu WC, Duan HS, Bob B, Yang W, Song TB, Hsu CJ, Yang Y (2013) CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ Sci 6:2822–2838

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (21203053, 21271064 and 61306016), the Joint Talent Cultivation Funds of NSFC-HN (U1204214), the Program for Changjiang Scholars and Innovative Research Team in University (PCS IRT1126) of Henan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Ji Zhou or Si-Xin Wu.

Additional information

Another article (doi:10.1007/s11051-015-3274-0) was originally released with the same citation ID (463), but re-published under citation ID 963

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZX., Zhou, ZJ., Bai, B. et al. Effect of ligand exchange of Cu2ZnSnS4 nanocrystals on the charge transport and photovoltaic performance of nanostructured depleted bulk heterojunction solar cell. J Nanopart Res 17, 463 (2015). https://doi.org/10.1007/s11051-015-3272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3272-2

Keywords

Navigation