Skip to main content
Log in

The effect of Fe–O–Fe bond angle on modulating multiferroic properties of Ba–K-codoped BiFeO3 nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bi0.9−x Ba0.1K x FeO3 (x = 0, 0.01, 0.02) nanoparticles have been successfully prepared using sol–gel method. X-ray diffraction data revealed rhombohedral distorted perovskite structure for all samples. The magnetization and the leakage current density both increased with K doping. Space charge limited conduction was found to be the dominant mechanism in whole electric field for all the samples investigated by plotting log J versus log E. In addition, the band gaps of all nanoparticles were investigated and the values showed no obvious change with the increase of K content due to the interplay of oxygen vacancies and bond angle of Fe–O–Fe. The dielectric properties including the dielectric constant and loss were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allafchian A, Bahramian H, Jalali SAH, Ahmadvand H (2015) Synthesis, characterization and antibacterial effect of new magnetically core–shell nanocomposites. J Magn Magn Mater 394:318–324. doi:10.1016/j.jmmm.2015.06.086

    Article  Google Scholar 

  • Borisevich AY, Chang HJ, Huijben M, Oxley MP, Okamoto S, Niranjan MK, Burton JD, Tsymbal EY, Chu YH, Yu P, Ramesh R, Kalinin SV, Pennycook SJ (2010) Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett 105:087204. doi:10.1103/PhysRevLett.105.087204

    Article  Google Scholar 

  • Bras GL, Colson D, Forget A, Riondet NG, Tourbot R, Bonville P (2009) Magnetization and magnetoelectric effect in Bi1−x La x FeO3 (0 ≤ x ≤ 0.15). Phys Rev B 80:134417. doi:10.1103/PhysRevB.80.134417

    Article  Google Scholar 

  • Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463. doi:10.1002/adma.200802849

    Article  Google Scholar 

  • Chakrabarti K, Das K, Sarkar B, Ghosh S, De SK, Sinha G, Lahtinen J (2012) Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles. Appl Phys Lett 101:042401. doi:10.1063/1.4738992

    Article  Google Scholar 

  • Chauhan S, Arora M, Sati PC, Chhoker S, Katyal SC, Kumar M (2013) Structural, vibrational, optical, magnetic and dielectric properties of Bi1−x Ba x FeO3 nanoparticles. Ceram Int 39:6399–6405. doi:10.1016/j.ceramint.2013.01.066

    Article  Google Scholar 

  • Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13–20. doi:10.1038/nmat1804

    Article  Google Scholar 

  • Das R, Khan GG, Varma S, Mukherjee GD, Mandal K (2013) Effect of quantum confinement on optical and magnetic properties of Pr–Cr-codoped bismuth ferrite nanowires. J Phys Chem C 117:20209–20216. doi:10.1021/jp407334d

    Article  Google Scholar 

  • Deng HL, Zhang M, Hu Z, Xie QF, Zhong Q, Wei JZ, Yan H (2014) Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics. J Alloy Compd 582:273–276. doi:10.1016/j.jallcom.2013.07.187

    Article  Google Scholar 

  • Guptab MK, Sinha N, Kumar B (2011) P-type K-doped ZnO nanorods for optoelectronic applications. J Appl Phys 109:083532. doi:10.1063/1.3574656

    Article  Google Scholar 

  • Hou L, Zuo KH, Sun QB, Ren ZM, Zeng YP, Li X (2013) Effects of external magnetic field on the morphology and magnetic property of BiFeO3 particles prepared by hydrothermal synthesis. Appl Phys Lett 102:082901. doi:10.1063/1.4792524

    Article  Google Scholar 

  • Hu WW, Chen Y, Yuan HM, Li GH, Qiao Y, Qin YY, Feng SH (2011) Structure, magnetic, and ferroelectric properties of Bi1−xGdxFeO3 nanoparticles. J Phys Chem C 115:8869–8875. doi:10.1021/jp1103142

    Article  Google Scholar 

  • Jiang QH, Ning HP, Zhang Q, Cain M, Reece MJ, Yan HX (2013) Active ferroelectricity in nanostructured multiferroic BiFeO3 bulk ceramics. J Mater Chem C 1:5628–5631. doi:10.1039/c3tc31140f

    Article  Google Scholar 

  • Joshi UA, Jang JS, Borse PH, Lee JS (2008) Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl Phys Lett 92:242106. doi:10.1063/1.2946486

    Article  Google Scholar 

  • Khomchenko VA, Kopcewicz M, Lopes AML, Pogorelov YG, Araujo JP, Vieira JM, Kholkin AL (2008) Intrinsic nature of the magnetization enhancement in heterovalently doped Bi1−x A x FeO3 (A = Ca, Sr, Pb, Ba) multiferroics. J Phys D 41:102003. doi:10.1088/0022-3727/41/10/102003

    Article  Google Scholar 

  • Li P, Lin YH, Nan CW (2012) Effect of nonmagnetic alkaline-earth dopants on magnetic properties of BiFeO3 thin films. J Appl Phys 110:033922. doi:10.1063/1.3622564

    Article  Google Scholar 

  • Li D, Huang JF, Cao LY, OuYang HB, Li JY, Yao CY (2014) Microwave hydrothermal synthesis of K+ doped ZnO nanoparticles with enhanced photocatalytic properties under visible-light. Mater Lett 118:17–20. doi:10.1016/j.matlet.2013.12.052

    Article  Google Scholar 

  • Makhdoom AR, Akhtar MJ, Rafiq MA, Hassan MM (2012) Investigation of transport behavior in Ba doped BiFeO3. Ceram Int 38:3829–3834. doi:10.1016/j.ceramint.2012.01.032

    Article  Google Scholar 

  • Makhdoom AR, Akhtar MJ, Rafiq MA, Siddique M, Iqbal M, Hasan MM (2014) Enhancement in the multiferroic properties of BiFeO3 by charge compensated aliovalent substitution of Ba and Nb. AIP Adv 4:037113. doi:10.1063/1.4869081

    Article  Google Scholar 

  • Maxwell JC (1929) Electricity and magnetism. Clarendon Press, Oxford/England

    Google Scholar 

  • Mocherla PSV, Karthik C, Ubic R, Rao MSR, Sudakar C (2013) Tunable bandgap in BiFeO3 nanoparticles: the role of microstrain and oxygen defects. Appl Phys Lett 103:022910. doi:10.1063/1.4813539

    Article  Google Scholar 

  • Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772. doi:10.1021/nl063039w

    Article  Google Scholar 

  • Prashanthi K, Chalke BA, Barick KC, Das A, Dhiman I, Palkar VR (2009) Enhancement in multiferroic properties of Bi0.8−xLaxDy0.3FeO3 system with removal of La. Solid State Commun 149:188–191. doi:10.1016/j.ssc.2008.11.025

    Article  Google Scholar 

  • Qi X, Dho J, Tomov R, Blamire MG, MacManus-Driscoll JL (2005) Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl Phys Lett 86:062903. doi:10.1063/1.1862336

    Article  Google Scholar 

  • Reetu, Agarwal A, Sanghi S, Ashima (2011) Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J Appl Phys 110:073909. doi:10.1063/1.3646557

    Article  Google Scholar 

  • Shah SMH, Akbar A, Riaz S, Atiq S, Naseem S (2014) Magnetic, structural, and dielectric properties of Bi1−x K x FeO3 thin films using sol-gel. Trans Magn 50:2201004. doi:10.1109/TMAG.2014.2310691

    Google Scholar 

  • Shirolkar MM, Hao CS, Dong XL, Guo T, Zhang L, Li M, Wang HQ (2014) Tunable multiferroic and bistable/complementary resistive switching properties of dilutely Li-doped BiFeO3 nanoparticles: an effect of aliovalent substitution. Nanoscale 6:4735–4744. doi:10.1039/c3nr05973a

    Article  Google Scholar 

  • Srivastav SK, Gajbhiye NS, Banerjee A (2013) Structural transformation and enhancement in magnetic properties of single-phase Bi1−x Pr x FeO3 nanoparticles. J Appl Phys 113:203917. doi:10.1063/1.4807928

    Article  Google Scholar 

  • Wagner KW (1913) Zur Theorie Der Unvollkommenen Dielektrika. Ann Phys 345:817–855. doi:10.1002/andp.19133450502

    Article  Google Scholar 

  • Wang J, Neaton JB, Zeng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wutting M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722. doi:10.1126/science.1080615

    Article  Google Scholar 

  • Wu MS, Huang ZB, Han CX, Yuan SL, Lu CL, Xia SC (2012) Enhanced multiferroic properties of BiFeO3 ceramics by Ba and high-valence Nb co-doping. Solid State Commun. 152:2142–2146. doi:10.1016/j.ssc.2012.09.005

    Article  Google Scholar 

  • Xu J, Yang H, Fu WY, Du K, Sui YM, Chen JJ, Zeng Y, Li MH, Zou GT (2007) Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater 309:307–311. doi:10.1016/j.jmmm.2006.07.037

    Article  Google Scholar 

  • Xu QY, Zai HF, Wu D, Qiu T, Xu MX (2009) The magnetic properties of Bi(Fe0.95Co0. 05)O3 ceramics. Appl Phys Lett 95:112510. doi:10.1063/1.3233944

    Article  Google Scholar 

  • Yang SY, Zavaliche F, Mohaddes-Ardabili L, Vaithyanathan V, Schlom DG, Lee YJ, Chu YH, Cruz MP, Zhan Q, Zhao T, Ramesh R (2005) Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl Phys Lett 87:102903. doi:10.1063/1.2041830

    Article  Google Scholar 

  • Yang H, Wang H, Zou GF, Jain M, Suvorova NA, Feldmann DM, Dowden PC, DePaula RF, MacManus-Driscoll JL, Taylor AJ, Jia QX (2008) Leakage mechanisms of self-assembled (BiFeO3)0.5:(Sm2O3)0.5 nanocomposite films. Appl Phys Lett 93:142904. doi:10.1063/1.3000013

    Article  Google Scholar 

  • Yang H, Wang YQ, Wang H, Jia QX (2010) Oxygen concentration and its effect on the leakage current in BiFeO3 thin films. Appl Phys Lett 96:012909. doi:10.1063/1.3291044

    Article  Google Scholar 

  • Yang CH, Kan D, Takeuchi I, Nagarajan V, Seidel J (2012) Doping BiFeO3: approaches and enhanced functionality. Phys Chem Chem Phys 14:15953–15962. doi:10.1039/c2cp43082g

    Article  Google Scholar 

  • Zhang H, Liu WF, Wu P, Hai X, Guo MC, Xi XJ, Gao J, Wang X, Guo F, Xu XL, Wang C, Liu GY, Chu WG, Wang SY (2014) Novel behaviors of multiferroic properties in Na-doped BiFeO3 nanoparticles. Nanoscale 6:10831–10838. doi:10.1039/c4nr02557a

    Article  Google Scholar 

  • Zhou BZ, Zhou W, Wu P (2014) Effects of vacancy and lattice distortion on ferromagnetism in sputtered epitaxial Sn1−x K x O2 films. J Magn Magn Mater 355:230–234. doi:10.1016/j.jmmm.2013.12.003

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Project Nos. 51572193 and 11104202) and the Guangxi Natural Science Foundation (Grant No. 2012GXNSFGA060002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Liu, W., Xu, X. et al. The effect of Fe–O–Fe bond angle on modulating multiferroic properties of Ba–K-codoped BiFeO3 nanoparticles. J Nanopart Res 17, 460 (2015). https://doi.org/10.1007/s11051-015-3264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3264-2

Keywords

Navigation