Skip to main content

Advertisement

Log in

3D Fe2(MoO4)3 microspheres with nanosheet constituents as high-capacity anode materials for lithium-ion batteries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications.

Graphical abstract

The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  Google Scholar 

  • Chen J, Xu L, Li WY, Guo XL (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 15:582–586

    Article  Google Scholar 

  • Chen D, Tang K, Li F, Zheng H (2006) A simple aqueous mineralization process to synthesize tetragonal molybdate microcrystallites. Cryst Growth Des 6:247–252

    Article  Google Scholar 

  • Cheng FY, Liang J, Tao ZL, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  Google Scholar 

  • Cherian CT, Reddy MV, Haur SC, Chowdari BVR (2013) Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl Mater Interfaces 5:918–923

    Article  Google Scholar 

  • Chu WG, Wang HF, Guo YJ, Zhang LN, Han ZH, Li QQ, Fan SS (2009) Catalyst-free growth of quasi-aligned nanorods of single crystal Cu3Mo2O9 and their catalytic properties. Inorg Chem 48:1243–1249

    Article  Google Scholar 

  • Cui XJ, Yu SH, Li LL, Biao L, Li HB, Mo MS, Liu XM (2004) Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process. Chem Eur J 10:218–223

    Article  Google Scholar 

  • Cui JX, Wang WS, Zhen L, Shao WZ, Chen ZL (2012) Formation of FeMoO4 hollow microspheres via a chemical conversion-induced Ostwald ripening process. CrystEngComm 14:7025–7030

    Article  Google Scholar 

  • Das B, Reddy MV, Krishnamoorthi C, Tripathy S, Mahendiran R, Subba Rao GV, Chowdari BVR (2009) Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochim Acta 54:3360–3373

    Article  Google Scholar 

  • Ding Y, Wan Y, Min YL, Zhang W, Yu S (2008) General synthesis and phase control of metal molybdate hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties. Inorg Chem 47:7813–7823

    Article  Google Scholar 

  • Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  Google Scholar 

  • Haetge J, Djerdj I, Brezesinski T (2012) Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries. Chem Commun 48:6726–6728

    Article  Google Scholar 

  • Ji LW, Lin Z, Alcoutlabi M (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  Google Scholar 

  • Jiao F, Bruce PG (2007) Mesoporous crystalline β-MnO2-a reversible positive electrode for rechargeable lithium batteries. Adv Mater 19:657–660

    Article  Google Scholar 

  • Jin GJ, Weng WH, Lin ZJ, Dummer NF, Taylor SH, Kiely CJ, Bartley JK, Hutchings GJ (2012) Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. J Catal 296:55–64

    Article  Google Scholar 

  • Jing D (2010) Catalytic partial oxidation of methane over Fe2(MoO4)3 catalysts. Master’s Thesis Chalmers University of Technology Göteborg Sweden

  • Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv Funct Mater 19:1497–1514

    Article  Google Scholar 

  • Leyzerovich N, Bramnik KG, Buhrmester T, Ehrenberg H, Fuess H (2004) Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni, and Fe). J Power Sources 127:76–84

    Article  Google Scholar 

  • Liu Y, Zhang X (2009) Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim Acta 54:4180–4185

    Article  Google Scholar 

  • Liu B, Yu S, Li L, Zhang F, Zhang Q, Yoshimura M (2004) Nanorod-direct oriented attachment growth and promoted crystallization processes evidenced in case of ZnWO4. J Phys Chem B 108:2788–2792

    Article  Google Scholar 

  • Lou YS, Zhang WD, Dai XJ, Yang Y, Fu SY (2009) Facile synthesis and luminescent properties of novel flowerlike BaMoO4 nanostructures by a simple hydrothermal route. J Phys Chem B 113:4856–4861

    Google Scholar 

  • Ma D, Huang S, Chen W, Hu S, Shi F, Fan K (2009) Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates: controlled synthesis, photocatalytic activities, and wettability. J Phys Chem C 113:4369–4374

    Article  Google Scholar 

  • Reddy MV, Yu T, Sow C, Shen ZX, Lim CT, Subba Rao GV, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode materials for Li-ion batteries. Adv Funct Mater 17:2792–2799

    Article  Google Scholar 

  • Rodriguez JA, Chaturvedi S, Hanson JC, Albornoz A, Brito JL (1998) Reaction of H2 and H2S with CoMoO4 and NiMoO4: TPR, XANES, time-resolved XRD, and molecular-orbital studies. J Phys Chem B 102:1347–1355

    Article  Google Scholar 

  • Sun ZQ, Kim JH, Zhao Y, Bijarbooneh F, Malgras V, Lee Y, Kang YM, Dou SX (2011) Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J Am Chem Soc 133:19314–19317

    Article  Google Scholar 

  • Sun ZQ, Kim JH, Zhao Y, Darren A, Dou SX (2013) Morphology-controllable 1D–3D nanostructed TiO2 bilayer photoanodes for dye-sensitized solar cells. Chem Commun 49:966–968

    Article  Google Scholar 

  • Sun ZQ, Liao T, Dou Y, Hwang SM, Park MS, Jiang L, Kim JH, Dou SX (2014) Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat Commun 5:3813–3823

    Google Scholar 

  • Vilminot S, Andre G, Kurmoo M (2009) Magnetic properties and magnetic structure of Cu(II)3Mo(VI)2O9. Inorg Chem 48:2687–2692

    Article  Google Scholar 

  • Wang Y, Cao GZ (2008) New developments of nanostructured cathode materials for highly efficient lithium ion batteries. Adv Mater 20:2251–2269

    Article  Google Scholar 

  • Wu HB, Chen J, Huang H, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  Google Scholar 

  • Xu Y, Jiang D, Bu W, Shi J (2005) Hydrothermal synthesis of highly ordered micropompon of lanthanum molybdate nanoflakes. Chem Lett 34:978–979

    Article  Google Scholar 

  • Yu SH, Liu B, Mo MS, Huang JH, Liu XM, Qian YT (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater 13:639–647

    Article  Google Scholar 

  • Yu XQ, He Y, Sun JP, Tang K, Li H, Chen LQ, Huang XJ (2009) Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun 11:791–794

    Article  Google Scholar 

  • Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high- performance electrochemical capacitors. Nano Energy 2:213–234

    Article  Google Scholar 

  • Zhang Q, Chen X, Zhou Y, Zhang G, Yu S (2007) Synthesis of ZnWO4@MWO4 (M = Mn, Fe) core-shell nanorods with optical and antiferromagnetic property by oriented attachment mechanism. J Phys Chem B 111:3927–3934

    Article  Google Scholar 

  • Zhang L, Cao XF, Ma YL, Chen XT, Xue ZL (2010) Pancake-like Fe2(MoO4)3 microstructures: microwave-assisted hydrothermal synthesis, magnetic and photocatalytic properties. New J Chem 34:2027–2033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanqi Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2015_3254_MOESM1_ESM.doc

Appendix A. Supplementary data associated with this article can be found in the online version. Supporting information (DOC 505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Wang, S., Wang, J. et al. 3D Fe2(MoO4)3 microspheres with nanosheet constituents as high-capacity anode materials for lithium-ion batteries. J Nanopart Res 17, 449 (2015). https://doi.org/10.1007/s11051-015-3254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3254-4

Keywords

Navigation