Skip to main content

Advertisement

Log in

Alternative assessment of nano-TiO2 sedimentation under different conditions based on sedimentation efficiency at quasi-stable state

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The predictable significant increase in manufacture and use of engineered nanoparticles (ENPs) will cause their inevitable release into environment, and the potential harmful effects of ENPs have been confirmed. As representative ENPs, sedimentation behavior of nano-titanium dioxide (n-TiO2) should be better understood to control its environmental risk. In this study, an experimental methodology was established to set the sampling area and sampling time of n-TiO2 sedimentation. In addition, we defined a quasi-stable state and a precise index, i.e., sedimentation efficiency (SE) at this state, to describe the n-TiO2 sedimentation behavior. Both alternative concentration determination and conventional size measurement were applied to evaluate the sedimentation behavior of n-TiO2 with fulvic acid. Results showed that the sedimentation behavior described by SE was more precise and in disagreement with those predicted by particle size. Moreover, sedimentation experiments with salicylic acid (SA), under an electric field and different water temperatures or with sulfosalicylic acid under light irradiation were also performed. When the total organic carbon concentration of SA, the voltage of working electrodes, and water temperature increased, or the wavelength of light source decreased, the SE of n-TiO2 increased and n-TiO2 showed a tendency to settle in water. These findings might be important for deepening the understanding of n-TiO2 environmental behavior and exploring sedimentation behavior of other ENPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badawy A, Luxton T, Silva R, Scheckel K, Suidan M, Tolaymat T (2010) Impact of environmental conditions (pH, IS, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266

    Article  Google Scholar 

  • Bello Lamo M, Williams P, Reece P, Lumpkin G, Sheppard L (2014) Study of gamma irradiation effect on commercial TiO2 photocatalyst. Appl Radiat Isot 89:25–29

    Article  Google Scholar 

  • Bhatkhande D, Pangarkar V, Beenackers A (2002) Photocatalytic degradation for environmental applications: a review. J Chem Technol Biot 77(1):102–116

    Article  Google Scholar 

  • Block I, Scheffold F (2010) Modulated 3D cross-correlation light scattering: improving turbid sample characterization. Rev Sci Instrum 81(12):123107

    Article  Google Scholar 

  • Braun J, Baidins A, Marganski R (1992) TiO2 pigment technology: a review. Prog Org Coat 20(2):105–138

    Article  Google Scholar 

  • Bushell G, Yan Y, Woodfield D, Raper J, Amal R (2002) On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interfac 95(1):1–50

    Article  Google Scholar 

  • Chen K, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309(1):126–134

    Article  Google Scholar 

  • Chen X, Mao S (2009) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  • Chowdhury I, Cwiertny D, Walker S (2012) Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ Sci Technol 46(13):6668–6676

    Article  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170

    Article  Google Scholar 

  • Deonarine A, Lau B, Aiken G, Ryan J, Hsu-Kim H (2011) Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Environ Sci Technol 45(8):3217–3223

    Article  Google Scholar 

  • Domingos R, Tufenkji N, Wilkinson K (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43(5):1282–1286

    Article  Google Scholar 

  • French R, Jacobson A, Kim B, Isley S, Penn R, Baveye P (2009) Influence of IS, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43(5):1354–1359

    Article  Google Scholar 

  • Gaya U, Abdullah A (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photoch Photobio C 9(1):1–12

    Article  Google Scholar 

  • Gómez-Merino A, Rubio-Hernández F, Velázquez-Navarro J, Aguiar J, Jiménez-Agredanoa C (2015) Study of the aggregation state of anatase water nanofluids using rheological and DLS methods. Ceram Int 40:14045–14050

    Article  Google Scholar 

  • Grillo R, Rosa A, Fraceto L (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619

    Article  Google Scholar 

  • Guo Y, Cheng C, Wang J, Wang Z, Jin X, Li K, Kang P, Gao J (2011) Detection of reactive oxygen species (ROS) generated by TiO2(R), TiO2(R/A) and TiO2(A) under ultrasonic and solar light irradiation and application in degradation of organic dyes. J Hazard Mater 192:786–793

    Article  Google Scholar 

  • He G, Liu H, Chen R, Wang C (2013) Transport behavior of engineered nanosized photocatalytic materials in water. J Nanomater. doi:10.1155/2013/856387

  • Johnson R, Johnson G, Nurmi J, Tratnyek P (2009) Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol 43(14):5455–5460

    Article  Google Scholar 

  • Keller A, Wang H, Zhou D, Lenihan H, Cherr G, Cardinale B, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967

    Article  Google Scholar 

  • Klaine S, Alvarez P, Batley G, Fernandes T, Handy R, Lyon D, Mahendra S, McLaughlin M, Lead J (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  Google Scholar 

  • Klimkevicius V, Graule T, Makuska R (2015) Effect of structure of cationic comb copolymers on their adsorption and stabilization of titania nanoparticles. Langmuir 31:2074–2083

    Article  Google Scholar 

  • Kralchevska R, Milanova M, Tsvetkov M, Dimitrov D, Todorovsky D (2012) Influence of gamma-irradiation on the photocatalytic activity of Degussa P25 TiO2. J Mater Sci 47:4936–4945

    Article  Google Scholar 

  • Lead J, Wilkinson K (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3(3):159–171

    Article  Google Scholar 

  • Li S, Zheng F, Cai S, Liang W, Li Y (2013) A visible light assisted photocatalytic system for determination of chemical oxygen demand using 5-sulfosalicylic acid in situ surface modified titanium dioxide. Sens Acutat B 188:280–285

    Article  Google Scholar 

  • Liu X, Chen G, Su C (2011) Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase. J Colloid Interface Sci 363:84–91

    Article  Google Scholar 

  • Liu W, Sun W, Borthwick A, Ni J (2013) Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-TiO2: influence of pH, ionic strength and natural organic matter. Colloid Surf A 434:319–328

    Article  Google Scholar 

  • Loosli F, Le Coustumer P, Stoll S (2015a) Effect of electrolyte valency, alginate concentration and pH on engineered TiO2 nanoparticle stability in aqueous solution. Sci Total Environ 535:28–34

    Article  Google Scholar 

  • Loosli F, Vitorazi L, Berret J, Stoll S (2015b) Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO2 nanoparticles interacting with natural organic matter. Water Res 80:139–148

    Article  Google Scholar 

  • Mitrano D, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147

    Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  Google Scholar 

  • Othman S, Rashid S, Ghazi T, Abdullah N (2012) Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J Nanomater. doi:10.1155/2012/718214

  • Ottofuelling S, von der Kammer F, Hofmann T (2011) Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. Environ Sci Technol 45(23):10045–10052

    Article  Google Scholar 

  • Pettibone J, Cwiertny D, Scherer M, Grassian V (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24(13):6659–6667

    Article  Google Scholar 

  • Pfaff G, Reynders P (1999) Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem Rev 99(7):1963–1982

    Article  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton R, Lowry G (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290

    Article  Google Scholar 

  • Schätzel K (1991) Suppression of multiple scattering by photon cross-correlation techniques. J Mod Optic 38(9):1849–1865

    Article  Google Scholar 

  • Schaumann G, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor S, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel H (2015) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19

    Article  Google Scholar 

  • Shen M, Yin Y, Booth A, Liu J (2015) Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions. Water Res 71:11–20

    Article  Google Scholar 

  • Tian X, Wu F, Xing B, Lin D (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39(6):1896–1908

    Article  Google Scholar 

  • Topuz E, Traber J, Sigg L, Talinli I (2015) Agglomeration of Ag and TiO2 nanoparticles in surface and wastewater: role of calcium ions and of organic carbon fractions. Environ Pollut 204:313–323

    Article  Google Scholar 

  • Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207(1):150–158

    Article  Google Scholar 

  • Wang C, Zhang X, Liu H, Li X, Li W, Xu H (2009) Reaction kinetics of photocatalytic degradation of sulfosalicylic acid using TiO2 microspheres. J Hazard Mater 163:1101–1106

    Article  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  Google Scholar 

  • Wiesner M, Lowry G, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  Google Scholar 

  • Yang Y, Kelkar A, Zhu X, Bai G, Ng H, Corti D, Franses E (2015) Effect of sodium dodecylsulfate monomers and micelles on the stability of aqueous dispersions of titanium dioxide pigment nanoparticles against agglomeration and sedimentation. J Colloid Interface Sci 450:434–445

    Article  Google Scholar 

  • Yu J, Jaroniec M, Yu H, Fan W (2012) Synthesis, characterization, properties, and applications of nanosized photocatalytic materials. J Nanomater. doi:10.1155/2012/783686

  • Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden J (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42(8–9):2204–2212

    Article  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249–4257

    Article  Google Scholar 

  • Zhu M, Wang H, Keller A, Wang T, Li F (2014) The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci Total Environ 487:375–380

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21067004, 51378494, and 51378316), Shenzhen Science and Technology Innovation Committee Program (JCYJ20130331151242230), and One Hundred Talents Program, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2015_3250_MOESM1_ESM.doc

Supplementary material 1. Additional information contains the characterization of n-TiO2, the analysis of FA, the detection method of n-TiO2 mass concentration, the detection method of SSA, the schematic of n-TiO2 sedimentation experiments under an electric field and light irradiation as well as the statistical analysis and data of n-TiO2 sedimentation experiments (DOC 5158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Chen, R., Lu, S. et al. Alternative assessment of nano-TiO2 sedimentation under different conditions based on sedimentation efficiency at quasi-stable state. J Nanopart Res 17, 454 (2015). https://doi.org/10.1007/s11051-015-3250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3250-8

Keywords

Navigation