Engineering nanofluid electrodes: controlling rheology and electrochemical activity of γ-Fe2O3 nanoparticles

  • Sujat Sen
  • Elahe Moazzen
  • Shankar Aryal
  • Carlo U. Segre
  • Elena V. Timofeeva
Research Paper


Nanofluid electrodes or nanoelectrofuels have significant potential in the field of flow batteries, as at high loadings of solid battery active nanoparticles, their energy density can be orders of magnitude higher than in traditional redox flow battery electrolytes. Nanofluid electrodes must have a manageable viscosity at high particle concentrations (i.e., easily pumpable) and exhibit good electrochemical activity toward charge and discharge reactions. Engineering of such nanofluid electrodes involves development of new and unique approaches to stabilization of nanoparticle suspensions. In this work, we demonstrate a surface modification approach that allows controlling the viscosity of nanofluids at high solid loading, while simultaneously retaining electrochemical activity of the nanoparticles. A scalable single step procedure for the surface grafting of small organic molecules onto iron (III) oxide nanoparticles (γ-Fe2O3, maghemite, 40–150 nm) is demonstrated. Modified iron oxide nanoparticles reported here have ~5 wt% of the grafting moiety on the surface, which helps forming stable dispersions with up to 40 wt% of solid loading in alkali aqueous electrolytes with a maximum viscosity of 12 cP at room temperature. The maximum particle concentration achievable in the same electrolyte with pristine nanoparticles is 15 wt%. Electrochemical testing of the pristine and modified nanomaterials in the form of solid-casted electrodes showed a maximum reversible discharge capacity of 280 and 155 mAh/g, respectively, indicating that electrochemical activity of modified nanoparticles is partially suppressed due to the surface grafted moiety.

Graphical Abstract


Nanofluid Nanoelectrofuel Viscosity Surface modification Iron (III) oxide Flow battery 



The project is supported by US Department of Energy, Advanced Research Funding Agency—Energy (ARPA-E). Use of the Argonne National Laboratory, Center for Nanoscale Materials including facilities at Electron Microscopy Center is supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

Supplementary material

11051_2015_3242_MOESM1_ESM.doc (932 kb)
Supplementary material 1 (DOC 931 kb)


  1. Boota M, Hatzell KB, Alhabeb M, Kumbur EC, Gogotsi Y (2015) Graphene-containing flowable electrodes for capacitive energy storage. Carbon 92:142–149. doi: 10.1016/j.carbon.2015.04.020 CrossRefGoogle Scholar
  2. Buongiorno J et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312. doi: 10.1063/1.3245330 CrossRefGoogle Scholar
  3. Chen H, Zou Q, Liang Z, Liu H, Li Q, Lu Y-C (2015) Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries. Nat Commun. doi: 10.1038/ncomms6877 Google Scholar
  4. Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang Y-M (2011) Semi-Solid Lithium Rechargeable Flow Battery. Adv Energy Mater 1:511–516. doi: 10.1002/aenm.201100152 CrossRefGoogle Scholar
  5. Garche J, Dietz H, Wiesener K (1984) The suspension electrode technique for electrochemical analysis of lead dioxide. J Electroanal Chem Interfacial Electrochem 180:577–585. doi: 10.1016/0368-1874(84)83608-4 CrossRefGoogle Scholar
  6. Harris LA, Goff JD, Carmichael AY, Riffle JS, Harburn JJ, St. Pierre TG, Saunders M (2003) Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 15:1367–1377. doi: 10.1021/cm020994n CrossRefGoogle Scholar
  7. Hatzell KB, Fan L, Beidaghi M, Boota M, Pomerantseva E, Kumbur EC, Gogotsi Y (2014) Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Appl Mater Interfaces 6:8886–8893. doi: 10.1021/am501650q CrossRefGoogle Scholar
  8. Hong RY, Zhang SZ, Han YP, Li HZ, Ding J, Zheng Y (2006) Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids. Powder Technol 170:1–11. doi: 10.1016/j.powtec.2006.08.017 CrossRefGoogle Scholar
  9. Hong RY, Ren ZQ, Han YP, Li HZ, Zheng Y, Ding J (2007) Rheological properties of water-based ferrofluids. Chem Eng Sci 62:5912–5924. doi: 10.1016/j.ces.2007.06.010 CrossRefGoogle Scholar
  10. Jain N, Wang Y, Jones SK, Hawkett BS, Warr GG (2010) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26:4465–4472. doi: 10.1021/la903513v CrossRefGoogle Scholar
  11. Lazareva TG, Shinkareva EV (2003) Rheological and electrophysical properties of dispersions based on thermally treated magnetite and aqueous emulsions of water-soluble polymers in transformer oil. Russ J Appl Chem 76:1813–1816. doi: 10.1023/B:RJAC.0000018690.86486.66 CrossRefGoogle Scholar
  12. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383–7389. doi: 10.1021/ja061529k CrossRefGoogle Scholar
  13. Li Z et al (2013) Aqueous semi-solid flow cell: demonstration and analysis. Phys Chem Chem Phys 15:15833–15839. doi: 10.1039/C3CP53428F CrossRefGoogle Scholar
  14. Lin Y-S, Liu T-J, Chu N-J (1991) A rheological model for iron oxide suspensions. J Appl Polym Sci 42:1767–1772. doi: 10.1002/app.1991.070420633 CrossRefGoogle Scholar
  15. Liu Z, Tay SW, Li X (2011) Rechargeable battery using a novel iron oxide nanorods anode and a nickel hydroxide cathode in an aqueous electrolyte. Chem Commun 47:12473–12475. doi: 10.1039/C1CC15022G CrossRefGoogle Scholar
  16. Losev AV, Petrii OA (1976) Effect of the aggregate stability of a suspension on the rate of charge transfer from the current collector of the suspension electrode to suspension particles. Elektrokhimya 12:1749Google Scholar
  17. Losev AV, Petrii OA (1979) Suspension and fluidized electrodes. Electrokhimiya 14:120Google Scholar
  18. Meethong N, Huang H-YS, Carter WC, Chiang Y-M (2007) Size-dependent lithium miscibility gap in nanoscale Li1  −  x FePO4. Electrochem Solid-State Lett 10:A134–A138. doi: 10.1149/1.2710960 CrossRefGoogle Scholar
  19. Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253. doi: 10.1039/C0SM00014K CrossRefGoogle Scholar
  20. Sen S, Govindarajan V, Pelliccione CJ, Wang J, Miller DJ, Timofeeva EV (2015) Surface modification approach to TiO2 nanofluids with high particle concentration, low viscosity, and electrochemical activity. ACS Appl Mater Interfaces 7:20538–20547. doi: 10.1021/acsami.5b05864 CrossRefGoogle Scholar
  21. Socoliuc V (1999) Investigation of concentration and surfactant quality influence on magnetic particle agglomeration in ferrofluids from static linear dichroism experiments. J Magn Magn Mater 207:146–157. doi: 10.1016/S0304-8853(99)00533-8 CrossRefGoogle Scholar
  22. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203CrossRefGoogle Scholar
  23. Timofeeva EV, Katsoudas JP, Segre CU, Singh D (2013) Rechargeable nanofluid electrodes for high energy density flow battery. Cleantechnol Energy Storage 9:363–366Google Scholar
  24. Vékás L, Bica D, Marinica O, Raşa M, Socoliuc V, Stoian FD (2005) Concentrated magnetic fluids on water and short chain length organic carriers. J Magn Magn Mater 289:50–53. doi: 10.1016/j.jmmm.2004.11.015 CrossRefGoogle Scholar
  25. Wang N, Hsu C, Zhu L, Tseng S, Hsu J-P (2013) Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci 407:22–28. doi: 10.1016/j.jcis.2013.05.058 CrossRefGoogle Scholar
  26. Youssry M, Madec L, Soudan P, Cerbelaud M, Guyomard D, Lestriez B (2015) Formulation of flowable anolyte for redox flow batteries: Rheo-electrical study. J Power Sour 274:424–431. doi: 10.1016/j.jpowsour.2014.10.076 CrossRefGoogle Scholar
  27. Yu W, France DM, Timofeeva EV, Singh D (2013) Effective thermal conductivity models for carbon nanotube-based nanofluids. J Nanofluids 2:69–73. doi: 10.1166/jon.2013.1036 CrossRefGoogle Scholar
  28. Zaichenko A, Bolshakova I, Mitina N, Shevchuk O, Bily A, Lobaz V (2005) The synthesis and rheological characteristics of colloidal systems containing functional magnetic nanoparticles. J Magn Magn Mater 289:17–20. doi: 10.1016/j.jmmm.2004.11.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2015

Authors and Affiliations

  • Sujat Sen
    • 1
  • Elahe Moazzen
    • 2
  • Shankar Aryal
    • 2
  • Carlo U. Segre
    • 2
  • Elena V. Timofeeva
    • 1
  1. 1.Energy Systems DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Physics Department & CSRRIIllinois Institute of TechnologyChicagoUSA

Personalised recommendations