Skip to main content
Log in

Fabrication of Bi-Fe3O4@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocatalysts are frequently connected to magnetic nanoparticles. These composites are easy to be retrieved from the reaction system under a magnetic field because of their magnetic properties. Magnetic separation is particularly promising in industry since it can solve many issues present in filtration, centrifugation, or gravitation separation. Herein, a facile method to prepare bismuth and Fe3O4 nanoparticles loaded on reduced graphene oxide magnetic hybrids (Bi-Fe3O4@RGO) using soluble starch as a dispersant is demonstrated. The magnetic Fe3O4 nanoparticles were synthesized by the co-precipitation of Fe2+ and Fe3+ ions, and Bi nanoparticles were fabricated by the redox reactions between sodium borohydride and ammonium bismuth citrate in the presence of soluble starch. Transmission electron microscopy images demonstrate that the average diameter of the Fe3O4 nanoparticles is about 5 nm and the diameters of Bi nanoparticles range from 10 to 20 nm. The magnetic Bi-Fe3O4@RGO hybrids exhibit high catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 with a first-order rate constant (K) of 0.00808 s−1 and is magnetically recyclable for at least five cycles. This strategy provides an efficient and recyclable catalyst for the use in environmental protection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  • Berger P, Adelman NB, Beckman KJ et al (1999) Preparation and properties of an aqueous ferrofluid. J Chem Educ 76:943–948

    Article  Google Scholar 

  • Bhimarasetti G, Sunkara MK (2005) Synthesis of sub-20-nm-sized bismuth 1-D structures using gallium-bismuth systems. J Phys Chem B 109:16219–16222

    Article  Google Scholar 

  • Bodaghi H, Mostofi Y, Oromiehie A, Ghanbarzadeh B, Hagh ZG (2015) Synthesis of clay–TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. J Appl Polym Sci 132:41764–41771

    Article  Google Scholar 

  • Cai HD, Li KG, Shen MW et al (2012) Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22:15110–15120

    Article  Google Scholar 

  • Carotenuto G, Hison CL, Capezzuto F et al (2009) Synthesis and thermoelectric characterisation of bismuth nanoparticles. J Nanopart Res 11:1729–1738

    Article  Google Scholar 

  • Chang YC, Chen DH (2009) Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J Hazard Mater 165:664–669

    Article  Google Scholar 

  • Chen JL, Cheng G, Li ZG, Miao FJ, Cui XQ, Zheng WT (2012a) Ultrafine Au nanodots on graphene oxide for catalytic reduction of 4-nitrophenol. NANO 8:13500341–13500348

    Google Scholar 

  • Chen S, Zhang HY, Wu LY et al (2012b) Controllable synthesis of supported Cu-M (M = Pt, Pd, Ru, Rh) bimetal nanocatalysts and their catalytic performances. J Mater Chem 22:9117–9122

    Article  Google Scholar 

  • Chen Q, Li KG, Wen SH et al (2013) Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 34:5200–5209

    Article  Google Scholar 

  • Deshmukh SP, Dhokale RK, Yadav HM et al (2013) Titania–supported silver nanoparticles: an efficient and reusable catalyst for reduction of 4-nitrophenol. Appl Surf Sci 273:676–683

    Article  Google Scholar 

  • Gong JL, Wang B, Zeng GM et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    Article  Google Scholar 

  • Heremans JP, Thrush CM, Morelli DT, Wu MC (2002) Thermoelectric power of bismuth nanocomposites. Phys Rev Lett 88:216801–216804

    Article  Google Scholar 

  • Hossain M, Su M (2012) Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. J Phys Chem C 116:23047–23052

    Article  Google Scholar 

  • Hu R, Dai SY, Shao DD et al (2015) Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites. J Mol Liq 203:80–89

    Article  Google Scholar 

  • Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  • Kidwai M, Bansal V, Saxena A, Aerry S, Mozumdar S (2006) Cu-Nanoparticles: efficient catalysts for the oxidative cyclization of Schiffs’ bases. Tetrahedron Lett 47:8049–8053

    Article  Google Scholar 

  • Lee SJ, Jung JJ, Kim MA, Kim YR, Park JK (2012) Synthesis of highly stable graphite-encapsulated metal (Fe Co, and Ni) nanoparticles. J Mater Sci 47:8112–8117

    Article  Google Scholar 

  • Lin G, Tan DZ, Luo FF et al (2011) Linear and nonlinear optical properties of glasses doped with Bi nanoparticles. J Non-Cryst Solids 357:2312–2315

    Article  Google Scholar 

  • Lu WS, Shen YH, Xie AJ, Zhang WQ (2010) Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322:1828–1833

    Article  Google Scholar 

  • Ma DC, Zhao JZ, Zhao Y et al (2012) Synthesis of bismuth nanoparticles and self-assembled nanobelts by a simple aqueous route in basic solution. Colloids Surf A 395:276–283

    Article  Google Scholar 

  • Masazumi T, Kenichi K, Atsushi S, Kenichi S (2012) Volcano-curves for dehydrogenation of 2-propanol and hydrogenation of nitrobenzene by SiO2-supported metal nanoparticles catalysts as described in terms of a d-band model. ACS Catal 2:1904–1909

    Article  Google Scholar 

  • Mohamed MM, Al-Sharif MS (2012) One pot synthesis of silver nanoparticles supported on TiO2 using hybrid polymers as template and its efficient catalysis for the reduction of 4-nitrophenol. Mater Chem Phys 136:528–537

    Article  Google Scholar 

  • Nemanashi M, Meijboom R (2013) Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci 389:260–262

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in grapheme. Nature 438:197–200

    Article  Google Scholar 

  • Park S, Kang K, Han WQ, Vogt T (2005) Generation and photocatalytic activities of Bi@Bi2O3 microspheres. J Alloy Comp 400:88–91

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  • Tahir M, Amin NS (2015) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reductionwith H2O vapors to CH4. Appl Catal B 162:98–109

    Article  Google Scholar 

  • Udayabhaskar R, Mangalaraja RV, Manikandan D, Arjunan V, Karthikeyan B (2012) Room temperature synthesis and optical studies on Ag and Au mixed nanocomposite polyvinylpyrrolidone polymer films. Spectrochim Acta Part A 99:69–73

    Article  Google Scholar 

  • Vadivel S, Kamalakannan VP, Keerthi Balasubramanian N (2014) D-Pencillamine assisted microwave synthesis of Bi2S3 microflowers/RGO composites for photocatalytic degradation—A facile green approach. Ceram Int 40:14051–14060

    Article  Google Scholar 

  • Wang FD, Buhro WE (2010) An easy shortcut synthesis of size-controlled bismuth nanoparticles and their use in the SLS growth of high-quality colloidal cadmium selenide quantum wires. Small 6:573–581

    Article  Google Scholar 

  • Wang J, Song DQ, Zhang H et al (2013) Studies of Fe3O4/Ag/Au composites for immunoassay based on surface plasmon resonance biosensor. Colloids Surf B 102:165–170

    Article  Google Scholar 

  • Wu JL, Shen XP, Jiang L, Wang K, Chen KM (2010) Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Appl Surf Sci 256:2826–2830

    Article  Google Scholar 

  • Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8821

    Article  Google Scholar 

  • Xia FL, Xu XY, Li XC, Zhang L, Wang W, Liu Y, Gao JP (2014) Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4–nitrophenol. Ind Eng Chem Res 53:10576–10582

    Article  Google Scholar 

  • Xing HB, Su LB, Jiang XB et al (2014) Mid-infrared luminescence of Bi–Te series single crystals. Opt Mater 36:1982–1985

    Article  Google Scholar 

  • Xu R, Bi HP, He GY, Zhu JW, Chen HQ (2014a) Synthesis of Cu-Fe3O4@graphene composite: a magnetically separable and efficient catalyst for the reduction of 4-nitrophenol. Mater Res Bull 57:190–196

    Article  Google Scholar 

  • Xu XY, Wu T, Xia FL et al (2014b) Redox reaction between graphene oxide and In powder to prepare In2O3/reduced graphene oxide hybrids for supercapacitors. J Power Sources 266:282–290

    Article  Google Scholar 

  • Yang FY, Liu K, Hong K, Reich DH, Searson PC, Chien CL (1999) Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284:1335–13357

    Article  Google Scholar 

  • Yang GW, Gao GY, Wang C, Xu CL, Li HL (2008) Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon 46:747–752

    Article  Google Scholar 

  • Ye L, Li ZH (2014) Rapid microwave-assisted syntheses of reduced grapheme oxide (RGO)/ZnIn2S4 microspheres as superior noble-metal-free photocatalyst for hydrogen volution sunder visible light. Appl Catal B 160(161):552–557

    Article  Google Scholar 

  • Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in grapheme. Nature 438:201–204

    Article  Google Scholar 

  • Zhang PP, Zhang XX, Sun HX et al (2009) Pd–CNT-catalyzed ligandless and additive-free heterogeneous Suzuki-Miyaura cross-coupling of arylbromides. Tetrahedron Lett 50:4455–4458

    Article  Google Scholar 

  • Zhang S, Shao YY, Liao HG et al (2011) Graphene decorated with Pt Au alloy nanoparticles: facile synthesis and promising application for formic acid oxidation. Chem Mater 23:1079–1081

    Article  Google Scholar 

  • Zhang YL, Yan WW, Sun ZM, Li XC, Gao JP (2014) Fabrication of magnetically recyclable Ag/Cu@Fe3O4 nanoparticles with excellent catalytic activity for p-nitrophenol reduction. Rsc Advances 72:38040-38047Zhang ZM, Zhao CJ, Min SD, Qian XZ (2014) A facile one-step route to RGO/Ni3S2 for high-performance super capacitors. Electrochim Acta 144:100–110

    Article  Google Scholar 

  • Zhao ZW, Liu J, Cui FY, Feng H, Zhang LL (2012) One pot synthesis of tunable Fe3O4–MnO2 core–shell nanoplates and their applications for water purification. J Mater Chem 22:9052–9057

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51202158, 21074089, and 21276181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xia, F., Li, X. et al. Fabrication of Bi-Fe3O4@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol. J Nanopart Res 17, 436 (2015). https://doi.org/10.1007/s11051-015-3230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3230-z

Keywords

Navigation