Skip to main content
Log in

Intensification of the separation of CuO nanoparticles from their highly diluted suspension using a foam flotation column with S type internal

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Foam flotation is a promising technique for recovering nanoparticles from their highly diluted suspensions. In this work, a novel S type internal was developed to intensify the foam flotation of CuO nanoparticles (357.6 nm in average particle size) from their suspension of 6.2 × 10−2 mmol/L. By enhancing foam drainage, the S type internal increased the enrichment ratio of CuO nanoparticles by 139.3 ± 12.5 % without significantly affecting their recovery percentage. Under the optimal conditions of Cetyl trimethyl ammonium bromide (CTAB) concentration 0.45 mmol/L, superficial airflow rate 2.6 mm/s, and volumetric feed rate 1.0 mL/min, the enrichment ratio and recovery percentage of CuO nanoparticles reached 81.6 ± 4.1 and 95.4 ± 4.9 %, respectively, using the foam flotation column with the S type internal. Furthermore, about 95 % CTAB could be recycled by recovering CTAB from the foamate and the residual solution. The recovered CuO nanoparticles were associated with CTAB molecules, so they had better dispersity and dispersion stability than the starting CuO nanoparticles. Therefore, they would have good reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aresta A, Calvano CD, Trapani A et al (2013) Development and analytical characterization of vitamin (s)-loaded chitosan nanoparticles for potential food packaging applications. J Nanopart Res 15(4):1–12

    Article  Google Scholar 

  • Awatey B, Skinner W, Zanin M (2013) Effect of particle size distribution on recovery of coarse chalcopyrite and galena in Denver flotation cell. Can Metall Quart 52(4):465–472

    Article  Google Scholar 

  • Binks BP, Horozov TS (2005) Aqueous foams stabilized solely by silica nanoparticles. Angew Chem 117(24):3788–3791

    Article  Google Scholar 

  • Dickinson JE, Laskovski D, Stevenson P et al (2010) Enhanced foam drainage using parallel inclined channels in a single-stage foam fractionation column. Chem Eng Sci 65(8):2481–2490

    Article  Google Scholar 

  • Donaldson K, Aitken R, Tran L et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22

    Article  Google Scholar 

  • Esumi K, Toyoda A, Goino M et al (1998) Adsorption characteristics of cationic surfactants on titanium dioxide with quaternary ammonium groups and their adsolubilization. J Colloid Interf Sci 202(2):377–384

    Article  Google Scholar 

  • Gerakis AM, Koupparis MA (1994) Physicochemical studies of the cetyltrimethylammonium bromide micellar system using a bromide selective electrode. Talanta 41(5):765–773

    Article  Google Scholar 

  • Guzman O, Abbott NL, de Pablo JJ (2005) Quenched disorder in a liquid-crystal biosensor: adsorbed nanoparticles at confining walls. J Chem Phys 122(18):184711

    Article  Google Scholar 

  • Jayaprakash J, Srinivasan N, Chandrasekaran P (2014) Surface modifications of CuO nanoparticles using Ethylene diamine tetra acetic acid as a capping agent by sol–gel routine. Spectrochim Acta A 123:363–368

    Article  Google Scholar 

  • Jing X, Park JH, Peters TM et al (2015) Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicol In Vitro 29(3):502–511

    Article  Google Scholar 

  • Li X, Evans GM, Stevenson P (2011) Process intensification of foam fractionation by successive contraction and expansion. Chem Eng Res Des 89(11):2298–2308

    Article  Google Scholar 

  • Li J, Wu Z, Li R (2012) Technology of streptomycin sulfate separation by two-stage foam separation. Biotechnol Progr 28(3):733–739

    Article  Google Scholar 

  • Limbach LK, Bereiter R, Müller E et al (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42(15):5828–5833

    Article  Google Scholar 

  • Linke D, Zorn H, Gerken B et al (2005) Foam fractionation of exo-lipases from a growing fungus (Pleurotus sapidus). Lipids 40(3):323–327

    Article  Google Scholar 

  • Liu JF, Sun J, Jiang GB (2010) Use of cloud point extraction for removal of nanosized copper oxide from wastewater. Chin Sci Bull 55(4–5):346–349

    Article  Google Scholar 

  • Lu K, Li R, Wu Z et al (2013) Wall effect on rising foam drainage and its application to foam separation. Sep Purif Technol 118:710–715

    Article  Google Scholar 

  • Lyubutin IS, Starchikov SS, Lin CR et al (2013) Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process. J Nanopart Res 15(1):1–13

    Article  Google Scholar 

  • Merz J, Burghoff B, Zorn H et al (2011) Continuous foam fractionation: performance as a function of operating variables. Sep Purif Technol 82:10–18

    Article  Google Scholar 

  • Qiang Y, Antony J, Sharma A et al (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res 8(3–4):489–496

    Article  Google Scholar 

  • Rakoczy R, Masiuk S (2009) Experimental study of bubble size distribution in a liquid column exposed to a rotating magnetic field. Chem Eng Process 48(7):1229–1240

    Article  Google Scholar 

  • Rao CNR, Cheetham AK (2011) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11(12):2887–2894

    Article  Google Scholar 

  • Rehman S, Mumtaz A, Hasanain SK (2011) Size effects on the magnetic and optical properties of CuO nanoparticles. J Nanopart Res 13(6):2497–2507

    Article  Google Scholar 

  • Ren J, Lu S, Shen J et al (2001) Research on the composite dispersion of ultra fine powder in the air. Mater Chem Phys 69(1):204–209

    Article  Google Scholar 

  • Saint-Jalmes A, Vera MU, Durian DJ (2000) Free drainage of aqueous foams: container shape effects on capillarity and vertical gradients. Epl-Europhys Lett 50(5):695

    Article  Google Scholar 

  • Shen YH (1998) Colloidal titanium dioxide separation from water by foam flotation. Sep Sci Technol 33:2623–2635

    Article  Google Scholar 

  • Stevenson P (2007) Hydrodynamic theory of rising foam. Miner Eng 20(3):282–289

    Article  Google Scholar 

  • Stone V, Johnston H, Clift MJD (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE T Nanobiosci 6(4):331–340

    Article  Google Scholar 

  • Valcárcel M (2011) Nanoparticles in the water cycle. In: FH Frimmel, R Niessner (eds) Properties, analysis, and environmental relevance. Anal Bioanal Chem 400(9): 2679–2680

  • Westerhoff P, Song G, Hristovski K et al (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monitor 13(5):1195–1203

    Article  Google Scholar 

  • Yan J, Wu Z, Zhao Y et al (2011) Separation of tea saponin by two-stage foam fractionation. Sep Purif Technol 80(2):300–305

    Article  Google Scholar 

  • Yang QW, Wu ZL, Zhao YL et al (2011) Enhancing foam drainage using foam fractionation column with spiral internal for separation of sodium dodecyl sulfate. J Hazard Mater 192(3):1900–1904

    Article  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P et al (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42(8):2204–2212

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (21346008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-liang Wu.

Additional information

Nan Hu and Rui Li have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, N., Li, R., Wu, Zl. et al. Intensification of the separation of CuO nanoparticles from their highly diluted suspension using a foam flotation column with S type internal. J Nanopart Res 17, 401 (2015). https://doi.org/10.1007/s11051-015-3205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3205-0

Keywords

Navigation