Skip to main content
Log in

Assembly of graphene oxide on nonconductive nonwovens by the synergistic effect of interception and electrophoresis

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Electrophoretic deposition has always been an attractive method to deposit nanoparticles on conductive materials, while most fiber-based materials have poor conductivity which limits the application of electrophoretic deposition in assembling nanoparticles onto fiber-based materials. A new approach to assemble graphene oxide (GO) nanosheets on nonconductive nonwovens via the synergistic effect of electrophoresis and fiber interception was reported in this study. To improve surface wettability, polypropylene (PP) nonwovens were modified by acrylic acid and subsequent N2 plasma treatment. Then GO nanosheets were anchored onto modified nonwovens by electrophoresis process and nonwoven interception. The results of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) manifested that etching and grafting simultaneously occurred on the surface of modified PP nonwovens, resulting in a great improvement of nonwoven hydrophily, which corresponded to the results of water contact angle. Furthermore, the results of X-ray diffraction, energy dispersive X-ray, SEM, and FTIR indicated that different amounts of GO nanosheets were successfully assembled onto modified PP nonwovens. This method provides a new avenue for incorporating carbon nanoparticles with nonconductive fiber-based materials, and modified PP nonwovens assembled with GO nanosheets show good air filtration performance for sodium chloride aerosol with a filtration efficiency of 87.9 % and a pressure drop of 36.4 mmH2O, and the reduced GO/PP composite nonwovens exhibit enhanced conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Armagan OG, Kayaoglu BK, Karakas HC, Guner FS (2014) Adhesion strength behaviour of plasma pre-treated and laminated polypropylene nonwoven fabrics using acrylic and polyurethane-based adhesives. J Ind Text 43:396–414. doi:10.1177/1528083712458303

    Article  Google Scholar 

  • Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61. doi:10.1016/j.pmatsci.2006.07.001

    Article  Google Scholar 

  • Boccaccini AR, Zhitomirsky I (2002) Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr Opin Solid State Mater Sci 6:251–260. doi:10.1016/s1359-0286(02)00080-3

    Article  Google Scholar 

  • Boccaccini AR, Karapappas P, Marijuan JM, Kaya C (2004) TiO2 coatings on silicon carbide and carbon fibre substrates by electrophoretic deposition. J Mater Sci 39:851–859. doi:10.1023/B:JMSC.0000012914.47793.3e

    Article  Google Scholar 

  • Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7:S581–S613. doi:10.1098/rsif.2010.0156.focus

    Article  Google Scholar 

  • Černáková L, Kováčik D, Zahoranová A, Černák M, Mazúr M (2005) Surface modification of polypropylene non-woven fabrics by atmospheric-pressure plasma activation followed by acrylic acid grafting. Plasma Chem Plasma Process 25:427–437. doi:10.1007/s11090-004-3137-4

    Article  Google Scholar 

  • Chavez-Valdez A, Boccaccini AR (2012) Innovations in electrophoretic deposition: alternating current and pulsed direct current methods. Electrochim Acta 65:70–89. doi:10.1016/j.electacta.2012.01.015

    Article  Google Scholar 

  • Chen L et al (2011) Reduction and disorder in graphene oxide induced by electron-beam irradiation. Mater Lett 65:1229–1230. doi:10.1016/j.matlet.2011.01.063

    Article  Google Scholar 

  • Einig A, Rumeau P, Desrousseaux S, Magga Y, Bai JB (2013) Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers. J Phys 429:012051. doi:10.1088/1742-6596/429/1/012051

    Google Scholar 

  • Evanoff K, Benson J, Schauer M, Kovalenko I, Lashmore D, Ready WJ, Yushin G (2012) Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano 6:9837–9845. doi:10.1021/nn303393p

    Article  Google Scholar 

  • Fugetsu B, Sano E, Yu H, Mori K, Tanaka T (2010) Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon 48:3340–3345. doi:10.1016/j.carbon.2010.05.016

    Article  Google Scholar 

  • Gao J, Li W, Shi H, Hu M, Li RKY (2014) Preparation, morphology, and mechanical properties of carbon nanotube anchored polymer nanofiber composite. Compos Sci Technol 92:95–102. doi:10.1016/j.compscitech.2013.12.008

    Article  Google Scholar 

  • Guo J, Lu C, An F, He S (2012) Preparation and characterization of carbon nanotubes/carbon fiber hybrid material by ultrasonically assisted electrophoretic deposition. Mater Lett 66:382–384. doi:10.1016/j.matlet.2011.09.022

    Article  Google Scholar 

  • Haji A, Rahbar RS, Shoushtari AM (2014) Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology. Appl Surf Sci 311:593–601. doi:10.1016/j.apsusc.2014.05.113

    Article  Google Scholar 

  • Hassan MA, Bong Yeol Y, Wilkie A, Pourdeyhimi B, Khan SA (2013) Fabrication of nanofiber meltblown membranes and their filtration properties. J Membr Sci 427:336–344. doi:10.1016/j.memsci.2012.09.050

    Article  Google Scholar 

  • He S et al (2011) Polyimide nano-coating on carbon fibers by electrophoretic deposition. Colloid Surf A-Physicochem Eng Asp 381:118–122. doi:10.1016/j.colsurfa.2011.03.039

    Article  Google Scholar 

  • Hsiao ST et al (2014) Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl Mater Interfaces 6:10667–10678. doi:10.1021/am502412q

    Article  Google Scholar 

  • Hu Y, Li X, Wang J, Li R, Sun X (2013) Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J Power Sources 237:41–46

    Article  Google Scholar 

  • Ju YW, Choi GR, Jung HR, Lee WJ (2008) Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochim Acta 53:5796–5803. doi:10.1016/j.electacta.2008.03.028

    Article  Google Scholar 

  • Konig K, Novak S, Ivekovic A, Rade K, Meng D, Boccaccini AR, Kobe S (2010) Fabrication of CNT-SiC/SiC composites by electrophoretic deposition. J Eur Ceram Soc 30:1131–1137. doi:10.1016/j.jeurceramsoc.2009.07.027

    Article  Google Scholar 

  • Lee W, Lee SB, Yi JW, Kim BS, Byun JH (2011) Fabrication of carbon nanotube/copper hybrid nanoplatelets coated carbon fiber composites by thermal vapor and electrophoretic depositions. Electrochem Solid-State Lett 14:K37–K39. doi:10.1149/1.3582354

    Article  Google Scholar 

  • Li P, Wang C, Zhang Y, Wei F (2014) Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small 10:4543–4561. doi:10.1002/smll.201401553

    Article  Google Scholar 

  • Li Y, Wang J, Li X, Geng D, Li R, Sun X (2011) Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 47:9438–9440

    Article  Google Scholar 

  • Liu S, Tian J, Wang L, Sun X (2011) Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. J Nanopart Res 13:4539–4548. doi:10.1007/s11051-011-0410-3

    Article  Google Scholar 

  • Liu X, Qin Z, Dou Z, Liu N, Chen L, Zhu M (2014) Fabricating conductive poly(ethylene terephthalate) nonwoven fabrics using an aqueous dispersion of reduced graphene oxide as a sheet dyestuff. RSC Adv 4:23869. doi:10.1039/c4ra01645a

    Article  Google Scholar 

  • Lopez R, Pascual M, Garcia-Sanoguera D, Sanchez-Nacher L, Balart R (2012) Improvement of liquid absorption properties of nonwoven polypropylene substrates by low pressure plasma treatment with CH4-O-2 mixture gas. Fiber Polym 13:1139–1144. doi:10.1007/s12221-012-1139-z

    Article  Google Scholar 

  • Man WS, Kan CW, Ng SP (2014) The use of atmospheric pressure plasma treatment on enhancing the pigment application to cotton fabric. Vacuum 99:7–11. doi:10.1016/j.vacuum.2013.04.018

    Article  Google Scholar 

  • Ramasundaram S, Jung JH, Chung E, Maeng SK, Lee SH, Song KG, Hong SW (2014) Increasing hydrophobicity of poly(propylene) fibers by coating reduced graphene oxide and their application as depth filter media. Carbon 70:179–189. doi:10.1016/j.carbon.2013.12.091

    Article  Google Scholar 

  • Shi C et al (2012) Monitoring influence of chemical preparation procedure on the structure of graphene nanosheets. Phys E 44:1420–1424. doi:10.1016/j.physe.2012.03.004

    Article  Google Scholar 

  • Singh BP, Nayak S, Nanda KK, Jena BK, Bhattacharjee S, Besra L (2013) The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 61:47–56. doi:10.1016/j.carbon.2013.04.063

    Article  Google Scholar 

  • Sun L, Yu H, Fugetsu B (2012) Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater 203–204:101–110. doi:10.1016/j.jhazmat.2011.11.097

    Article  Google Scholar 

  • Wang N, Wang X, Ding B, Yu J, Sun G (2012) Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. J Mater Chem 22:1445–1452. doi:10.1039/c1jm14299b

    Article  Google Scholar 

  • Wang S, Dryfe RAW (2013) Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors. J Mater Chem A 1:5279. doi:10.1039/c3ta10436b

    Article  Google Scholar 

  • Xiang C, Lu W, Zhu Y, Sun Z, Yan Z, Hwang C-C, Tour JM (2012) Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers. ACS Appl Mater Interfaces 4:131–136. doi:10.1021/am201153b

    Article  Google Scholar 

  • Yang J et al (2012) 3D porous LiFePO 4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J Power Sources 208:340–344

    Article  Google Scholar 

  • Yoshida K, Matsukawa K, Imai M, Yano T (2009) Formation of carbon coating on SiC fiber for two-dimensional SiCf/SiC composites by electrophoretic deposition. Mater Sci Eng B-Adv 161:188–192. doi:10.1016/j.mseb.2008.11.032

    Article  Google Scholar 

  • Yue M et al (2015) Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF4 microwave plasma treatment. Appl Surf Sci 327:93–99. doi:10.1016/j.apsusc.2014.11.149

    Article  Google Scholar 

  • Zhang J et al (2013a) Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J Mater Chem A 1:3101–3111

    Article  Google Scholar 

  • Zhang J et al (2013b) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 448:81–92. doi:10.1016/j.memsci.2013.07.064

    Article  Google Scholar 

  • Zhitomirsky I (1998) Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers. J Eur Ceram Soc 18:849–856. doi:10.1016/s0955-2219(97)00213-6

    Article  Google Scholar 

  • Zhou B et al (2015) Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF4 plasma. J Nanopart Res 17:1–12. doi:10.1007/s11051-015-2946-0

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the National Natural Science Foundation of China (51408416) and the Petrochemical Joint Funds of National Natural Science Fund Committee—China National Petroleum Corporation (U1362108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, K., Zhu, T., Li, X. et al. Assembly of graphene oxide on nonconductive nonwovens by the synergistic effect of interception and electrophoresis. J Nanopart Res 17, 373 (2015). https://doi.org/10.1007/s11051-015-3177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3177-0

Keywords

Navigation