Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite)

Abstract

Textural, magnetic and spectroscopic properties are reported of Fe-doped aluminosilicate nanotubes (NTs) of the imogolite type, IMO, with nominal composition (OH)3Al2−x Fe x O3SiOH (x = 0, 0.025, 0.050). Samples were obtained by either direct synthesis (Fe-0.025-IMO, Fe-0.050-IMO) or post-synthesis loading (Fe-L-IMO). The Fe content was either 1.4 wt% (both Fe-0.050-IMO and Fe-L-IMO) or 0.7 wt% (Fe-0.025-IMO). Textural properties were characterized by High-Resolution Transmission Electron Microscopy, X-ray diffraction and N2 adsorption/desorption isotherms at 77 K. The presence of different iron species was studied by magnetic moment measurements and three spectroscopies: Mössbauer, UV–Vis and electron paramagnetic resonance, respectively. Fe3+/Al3+ isomorphic substitution (IS) at octahedral sites at the external surface of NTs is the main process occurring by direct synthesis at low Fe loadings, giving rise to the formation of isolated high-spin Fe3+ sites. Higher loadings give rise, besides IS, to the formation of Fe2O3 clusters. IS occurs up to a limit of Al/Fe atomic ratio of ca. 60 (corresponding to x = 0.032). A fraction of the magnetism related to NCs is pinned by the surface anisotropy; also, clusters are magnetically interacting with each other. Post-synthesis loading leads to a system rather close to that obtained by direct synthesis, involving both IS and cluster formations. Slightly larger clusters than with direct synthesis samples, however, are formed. The occurrence of IS indicates a facile cleavage/sealing of Al–O–Al bonds: this opens the possibility to exchange Al3+ ions in pre-formed IMO NTs, a much simpler procedure compared with direct synthesis.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ackerman WC, Smith DM, Huling JC, Kim Y, Bailey JK, Brinker CJ (1993) Gas/vapor adsorption in imogolite: a microporous tubular aluminosilicate. Langmuir 9:1051–1057

    Article  Google Scholar 

  2. Alvarez-Ramírez F (2009) First principles studies of Fe-containing aluminosilicate and aluminogermanate nanotubes. J Chem Theory Comput 5:3224–3231

    Article  Google Scholar 

  3. Amara MS, Rouzière S, Paineau E, Bacia-Verloop M, Thill A, Launois P (2014) Hexagonalization of aluminogermanate imogolite nanotubes organized into closed-packed bundles. J Chem Phys C 118:9299–9306

    Article  Google Scholar 

  4. Arancibia-Miranda N, Escudey M, Pizarro C, Denardin JC, García-González MT, Fabris JD, Charlet L (2014) Preparation and characterization of a single-walled aluminosilicate nanotube-iron oxide composite: its applications to removal of aqueous arsenate. Mater Res Bull 51:145–152

    Article  Google Scholar 

  5. Avellan A, Levard C, Kumar N, Rose J, Olivi L, Thill A, Chaurand P, Borschneck D, Masion A (2014) Structural incorporation of iron into Ge-imogolite nanotubes: a promising step for innovating nanomaterials. RSC Adv 4:49827–49830

    Article  Google Scholar 

  6. Berlier G, Spoto G, Bordiga S, Ricchiardi G, Fisicaro P, Zecchina A, Rossetti I, Selli E, Forni L, Giamello E, Lamberti C (2002) Evolution of extraframework Iron species in Fe silicalite: 1. Effect of Fe content, activation temperature, and interaction with redox agents. J Catal 208:64–82

    Article  Google Scholar 

  7. Bonelli B, Bottero I, Ballarini N, Passeri S, Cavani F, Garrone E (2009) IR spectroscopic and catalytic characterization of the acidity of imogolite-based systems. J Catal 264:15–30

    Article  Google Scholar 

  8. Bonelli B, Armandi M, Garrone E (2013) Surface properties of alumino-silicate single-walled nanotubes of the imogolite type. Phys Chem Chem Phys 15:13381–13390

    Article  Google Scholar 

  9. Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G (1996) Structure and reactivity of framework and extra- framework ieon in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501

    Article  Google Scholar 

  10. Borghi E, Occhiuzzi M, Foresti E, Lesci IG, Roveri N (2010) Spectroscopic characterization of Fe-doped synthetic chrysotile by EPR, DRS and magnetic susceptibility measurements. Phys Chem Chem Phys 12:227–238

    Article  Google Scholar 

  11. Bottero I, Bonelli B, Ashbrook S, Wright P, Zhou W, Tagliabue M, Armandi M, Garrone E (2011) Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption. Phys Chem Chem Phys 13:744–750

    Article  Google Scholar 

  12. Chikazumi S (1997) Physics of ferromagnetism, 1997th edn. Oxford University Press, Oxford. ISBN 0-19-851776-9

    Google Scholar 

  13. Coey JMD (2009) Magnetism and magnetic material. Cambridge University Press, Cambridge. ISBN 9780521816144

    Google Scholar 

  14. Cradwick PDG, Farmer VC, Russell JD, Wada K, Yoshinaga N (1972) Imogolite, a hydrated aluminium silicate of tubular structure. Nat Phys Sci 240:187–189

    Article  Google Scholar 

  15. Eid C, Luneau D, Salles V, Asmar R, Monteil Y, Khoury A, Brioude A (2011) Magnetic properties of hematite nanotubes elaborated by electrospinning process. J Phys Chem C 115:17643–17646

    Article  Google Scholar 

  16. Fallet M, Gschwind R, Bauer P (2003) Oxidation states of iron in doped TiO2-SiO2 sol-gel powders: a 57Fe Mössbauer study. J Sol Gel Sci Technol 27:167–173

    Article  Google Scholar 

  17. Farmer VC, Fraser AR (1978) Synthetic imogolite: a tubular hydroxyaluminium silicate. In: Proceedings of the international clay conference. Elsevier, Amsterdam, pp 547–554

  18. Farmer VC, Adams MJ, Fraser AR, Palmieri F (1983) Synthetic imogolite: properties, synthesis, and possible applications. Clay Miner 18:459–472

    Article  Google Scholar 

  19. Ferretti AM, Barra AL, Forni L, Oliva C, Schweiger A, Ponti A (2004) Electron paramagnetic resonance spectroscopy of iron(iii)-doped mfi zeolite. 1. Multi-frequency CW-EPR. J Phys Chem B 108:1999–2005

    Article  Google Scholar 

  20. Fisicaro P, Giamello E, Berlier G, Lamberti C (2003) Paramagnetic nitrosyliron adducts in pentasilic zeolites: an EPR study. Res Chem Intermed 29:805–816

    Article  Google Scholar 

  21. Goldfarb D, Bernardo M, Stoheimer KG, Vaughan DEW, Tomann H (1994) Characterization of iron in zeolites by X-band and Q-band ESR, pulsed ESR, and UV–Visible spectroscopies. J Am Chem Soc 116:6344–6353

    Article  Google Scholar 

  22. Joyner RW, Stockenhuber M (1999) Preparation, characterization, and performance of Fe–ZSM-5 catalysts. J Phys Chem B 103:5963–5976

    Article  Google Scholar 

  23. Kang D-Y, Zang J, Jones CW, Nair S (2011) Single-walled aluminosilicate nanotubes with organic-modified interiors. J Phys Chem C 115:7676–7685

    Article  Google Scholar 

  24. Kang D-Y, Brunelli NA, Yucelen GI, Venkatasubramanian A, Zang J, Leisen J, Hesketh PJ, Jones CW, Nair S (2014) Direct synthesis of aminoaluminosilicate nanotubes with enhanced molecular adsorption selectivity. Nat Commun 5:3342

    Google Scholar 

  25. Kodama RH, Berkowitz AE, McNiff EJ, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394–397

    Article  Google Scholar 

  26. Konduri S, Mukherjee S, Nair S (2006) Strain energy minimum and vibrational properties of single-walled aluminosilicate nanotubes. Phys Rev B 74:033401

    Article  Google Scholar 

  27. Lopez T, Moreno JA, Gomez R, Bokhimi X, Wang JA, Yee-Madeira H, Pecchi G, Reyes P (2002) Characterization of iron-doped titania sol–gel materials. J Mater Chem 12:714–718

    Article  Google Scholar 

  28. Lunsford JH (1968) Surface interactions of NaY and decationated Y zeolites with nitric oxide as determined by electron paramagnetic resonance spectroscopy. J Phys Chem 72:4163–4168

    Article  Google Scholar 

  29. MacKenzie KJ, Bowden ME, Brown JWM, Meinhold RH (1989) Structure and thermal transformations of imogolite studied by 29Si and 27Al high-resolution solid-state nuclear magnetic resonance. Clay Clay Miner 37:317–324

    Article  Google Scholar 

  30. Mukherjee S, Bartlow VM, Nair S (2005) Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions. Chem Mater 17:4900–4909

    Article  Google Scholar 

  31. Ookawa M (2012) Synthesis and characterization of Fe-Imogolite as an oxidation catalyst. In: Clay minerals in nature—their characterization, modification and application. InTech, pp 239–257. ISBN 978-953-51-0738-5

  32. Ookawa M, Inoue Y, Watanabe M, Suzuki M, Yamaguchi T (2006) Synthesis and characterization of Fe containing imogolite. Clay Sci 12:280–284

    Google Scholar 

  33. Papaefthymiou GC, Bustamante A, Scorzelli RB (2002) Mössbauer characterization of iron oxide nanoclusters grown within aluminosilicate matrices. MRS Proc 746(R5):1. doi:10.1557/PROC-746-R5.1

    Google Scholar 

  34. Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Clarendon Press, Oxford. ISBN 0-198-55214-9

    Google Scholar 

  35. Pöpple A, Gutjahr M, Rudolf T (2004) Molecules in interaction with surfaces and interfaces, vol 634., Lect Notes PhysSpringer, Berlin, p 185. ISBN 978-3-540-40024-0

    Google Scholar 

  36. Reis STD, Pontuschka WM, Yang JB, Faria DLA (2003) Properties and structural features of Fe doped BABAL glasses. Mat Res 6:389–394

    Article  Google Scholar 

  37. Thill A, Maillet P, Guiose B, Spalla O, Belloni L, Chaurand P, Auffan M, Olivi L, Rose J (2012) Physico-chemical control over the single- or double-wall structure of aluminogermanate imogolite-like nanotubes. J Am Chem Soc 134:3780–3786

    Article  Google Scholar 

  38. Umamaheswari V, Böhlmann W, Pöppl A, Vinu A, Hartmann M (2006) Spectroscopic characterization of iron-containing MCM-58. Microporous Mesoporous Mater 89:47–57

    Article  Google Scholar 

  39. Wada SI (1987) Imogolite synthesis at 25 & #xB0;C. Clay Miner 35:379–384

    Article  Google Scholar 

  40. Wada SI, Eto A, Wada K (1979) Synthetic allophane and imogolite. J Soil Sci 30:347–355

    Article  Google Scholar 

  41. Wang Y, Zhang QH, Shishido T, Takehira K (2002) Characterization of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. J Catal 209:186–196

    Article  Google Scholar 

  42. Wilson MA, Lee GSH, Taylor RC (2002) Benzene displacement on imogolite. Clays Clay Miner 50:348–351

    Article  Google Scholar 

  43. Yoshinaga N, Aomine A (1962) Imogolite in some Ando Soils. Soil Sci Plant Nutr 8:22–29

    Article  Google Scholar 

  44. Zanzottera C, Vicente A, Armandi M, Fernandez C, Garrone E, Bonelli B (2012) Thermal collapse of single-walled alumino-silicate nanotubes: transformation mechanisms and morphology of the resulting lamellar phases. J Phys Chem C 116:23577–23584

    Article  Google Scholar 

  45. Zysler RD, De Biasi E, Ramos CA, Fiorani D, Romero H (2005) Surface and interparticle effects in amorphous magnetic nanoparticles. In: Fiorani D (ed) Surface effects in magnetic nanoparticles. Springer Science + Business Media, New York, pp 239–261

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Paolo Allia or Barbara Bonelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shafia, E., Esposito, S., Manzoli, M. et al. Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite). J Nanopart Res 17, 336 (2015). https://doi.org/10.1007/s11051-015-3130-2

Download citation

Keywords

  • Aluminosilicate nanotubes
  • Imogolite
  • Isomorphic substitution
  • High-spin Fe3+ sites
  • Fe2O3 clusters
  • Paramagnetism
  • Band-gap
  • Nanocomposites