Skip to main content

The euglobulin clot lysis time to assess the impact of nanoparticles on fibrinolysis

Abstract

Nanoparticles (NPs) are developed for many applications in various fields, including nanomedicine. The NPs used in nanomedicine may disturb homeostasis in blood. Secondary hemostasis (blood coagulation) and fibrinolysis are complex physiological processes regulated by activators and inhibitors. An imbalance of this system can either lead to the development of hemorrhages or thrombosis. No data are currently available on the impact of NPs on fibrinolysis. The objectives of this study are (1) to select a screening test to study ex vivo the impact of NPs on fibrinolysis and (2) to test NPs with different physicochemical properties. Euglobulin clot lysis time test was selected to screen the impact of some NPs on fibrinolysis using normal pooled plasma. A dose-dependent decrease in the lysis time was observed with silicon dioxide and silver NPs without disturbing the fibrin network. Carbon black, silicon carbide, and copper oxide did not affect the lysis time at the tested concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ahamed M, Alsalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chim Acta; Int J Clin Chem 411:1841–1848

    Article  Google Scholar 

  • Bertelmann T, Spychalska M, Kohlberger L, Strodthoff S, Witteborn M, Kicova N, Sachs U, Irle S, Mennel S (2013) Intracameral concentrations of the fibrinolytic system components in patients with age-related macular degeneration. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 251:2697–2704

    Article  Google Scholar 

  • Boudjeltia KZ, Cauchie P, Remacle C, Guillaume M, Brohee D, Hubert JL, Vanhaeverbeek M (2002) A new device for measurement of fibrin clot lysis: application to the euglobulin clot lysis time. BMC Biotechnol 2:8

    Article  Google Scholar 

  • Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater (Deerfield Beach, Fla.) 25:3144–3176

    Article  Google Scholar 

  • Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133–149

    Article  Google Scholar 

  • de Mel A, Chaloupka K, Malam Y, Darbyshire A, Cousins B, Seifalian AM (2012) A silver nanocomposite biomaterial for blood-contacting implants. J Biomed Mater Res, Part A 100:2348–2357

    Google Scholar 

  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008a) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5:487–495

    Article  Google Scholar 

  • Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008b) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8:2180–2187

    Article  Google Scholar 

  • Dobrovolskaia MA, Neun BW, Man S, Ye X, Hansen M, Patri AK, Crist RM, McNeil SE (2014) Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomed Nanotechnol Biol Med 10:1453

    Article  Google Scholar 

  • Flemmig M, Melzig MF (2012) Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol 64:1025–1039

    Article  Google Scholar 

  • Hock SC, Ying YM, Wah CL (2011) A review of the current scientific and regulatory status of nanomedicines and the challenges ahead. PDA J Pharm Sci Technol/PDA 65:177–195

    Google Scholar 

  • Krajewski S, Prucek R, Panacek A, Avci-Adali M, Nolte A, Straub A, Zboril R, Wendel HP, Kvitek L (2013) Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood. Acta Biomater 9:7460–7468

    Article  Google Scholar 

  • Laffan M, Manning R (2006) Investigations of hemostasis. In: Lewis SM, Bain BJ, Bates I (eds) Dacie and Lewis practical hematology. Elsevier, Amsterdam, pp 379–440

  • Laloy J, Robert S, Marbehant C, Mullier F, Mejia J, Piret JP, Lucas S, Chatelain B, Dogne JM, Toussaint O, Masereel B, Rolin S (2012) Validation of the calibrated thrombin generation test (cTGT) as the reference assay to evaluate the procoagulant activity of nanomaterials. Nanotoxicology 6:213–232

    Article  Google Scholar 

  • Laloy J, Alpan L, Mullier F, Beken S, Toussaint O, Lucas S, Dogné J (2014a) Impact of silver nanoparticles on haemolysis, platelet function and coagulation. Nanomater Nanotechnol 4:27

    Google Scholar 

  • Laloy J, Mullier F, Alpan L, Mejia J, Lucas S, Chatelain B, Toussaint O, Masereel B, Rolin S, Dogne JM (2014b) A comparison of six major platelet functional tests to assess the impact of carbon nanomaterials on platelet function: a practical guide. Nanotoxicology 8:220–232

    Article  Google Scholar 

  • Lier H, Vorweg M, Hanke A, Gorlinger K (2013) Thromboelastometry guided therapy of severe bleeding. Essener Runde algorithm. Hamostaseologie 33:51–61

    Article  Google Scholar 

  • Meltzer ME, Lisman T, de Groot PG, Meijers JC, le Cessie S, Doggen CJ, Rosendaal FR (2010) Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 116:113–121

    Article  Google Scholar 

  • Mocan T (2013) Hemolysis as expression of nanoparticles-induced cytotoxicity in red blood cells. Biotechnol Mol Biol Nanomed 1:7

    Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J: Off Publ Fed Am Soc Exp Biol 19:311–330

    Article  Google Scholar 

  • Montes R, Paramo JA, Angles-Cano E, Rocha E (1996) Development and clinical application of a new ELISA assay to determine plasmin-alpha2-antiplasmin complexes in plasma. Br J Haematol 92:979–985

    Article  Google Scholar 

  • Mullier F, Bailly N, Chatelain C, Chatelain B, Dogne JM (2013) Pre-analytical issues in the measurement of circulating microparticles: current recommendations and pending questions. J Thromb Haemost 11:693–696

    Article  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    Article  Google Scholar 

  • Pries AR, Secomb TW (2003) Rheology of the microcirculation. Clin Hemorheol Microcirc 29:143–148

    Google Scholar 

  • Schouten HJ, Geersing GJ, Koek HL, Zuithoff NP, Janssen KJ, Douma RA, van Delden JJ, Moons KG, Reitsma JB (2013) Diagnostic accuracy of conventional or age adjusted D-dimer cut-off values in older patients with suspected venous thromboembolism: systematic review and meta-analysis. BMJ 346:f2492

    Article  Google Scholar 

  • Simak J (2009) Nanotoxicity from in vivo and in vitro models to health risks—Chapter 11: nanotoxicity in blood: effects of engineered nanomaterials on platelets. Wiley, Chichester

    Google Scholar 

  • Smith AA, Jacobson LJ, Miller BI, Hathaway WE, Manco-Johnson MJ (2003) A new euglobulin clot lysis assay for global fibrinolysis. Thromb Res 112:329–337

    Article  Google Scholar 

  • Swanepoel AC, Lindeque BG, Swart PJ, Abdool Z, Pretorius E (2014) Estrogen causes ultrastructural changes of fibrin networks during the menstrual cycle: a qualitative investigation. Microsc Res Tech 77:594–601

    Article  Google Scholar 

  • Tait RC, Walker ID, Conkie JA, Islam SI, McCall F, Mitchell R, Davidson JF (1992) Plasminogen levels in healthy volunteers–influence of age, sex, smoking and oral contraceptives. Thromb Haemost 68:506–510

    Google Scholar 

  • Wikkelsoe AJ, Afshari A, Wetterslev J, Brok J, Moeller AM (2011) Monitoring patients at risk of massive transfusion with thrombelastography or thromboelastometry: a systematic review. Acta Anaesthesiol Scand 55:1174–1189

    Article  Google Scholar 

  • You J, Zhang Y, Hu Z (2011) Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf B, Biointerfaces 85:161–167

    Article  Google Scholar 

  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 263147 (NanoValid - Development of reference methods for hazard identification, risk assessment and LCA of engineered nanomaterials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentine Minet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minet, V., Alpan, L., Mullier, F. et al. The euglobulin clot lysis time to assess the impact of nanoparticles on fibrinolysis. J Nanopart Res 17, 317 (2015). https://doi.org/10.1007/s11051-015-3110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3110-6

Keywords

  • Nanoparticles
  • Fibrinolysis
  • Hemocompatibility
  • Blood
  • Nanomedicine