Skip to main content
Log in

Direct effect of tetrahedral alcohol species on the SPB of gold colloids: a deconvolution study

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Aqueous gold colloids with a mean diameter of 15.4 ± 1.5 nm have been transferred into a range of water–alcohol mixtures. The influence of these mixtures (methanol, ethanol, 2-propanol, and tert-butanol), which present different hydrophobic properties, on the surface plasmon band of gold nanoparticles has been studied. Shifts of gold nanoparticles’ surface plasmon band (SPB) depend on the number of methyl groups and hydrophobic character of the alcohol molecule. Results from deconvolution analysis are explained considering variations on the grade of alcohol adsorption on the nanoparticle surface. TEM images indicate aggregation of the nanoclusters in mixtures of 2-propanol and tert-butanol. ζ potential measurements support the exchange of citrate ions by alcohol molecules, which in turn reflects the existence of an additional electrostatic component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Balasubramanian R, Kim B, Tripp SL et al (2002) Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir 18:3676–3681

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particle. Wiley, New York

    Google Scholar 

  • Franks F (1968) Hydrogen-bonded solvents systems. Taylor and Francis, London

    Google Scholar 

  • Gil GO, Prévost S, Losik M et al (2009) Polypeptide hybrid copolymers as selective micellar nanocarriers in nonaqueous media. Colloid Polym Sci 287:1295–1304

    Article  Google Scholar 

  • Green SJ, Stokes JJ, Hostetler MJ et al (1997) Three-Dimensional Monolayers: nanometer-sized electrodes of alkanethiolate-stabilized gold cluster molecules. J Phys Chem B 101:2663–2668

    Article  Google Scholar 

  • Hostetler MJ, Green SJ, Stokes JJ, Murray RW (1996) Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc 118:4212–4213

    Article  Google Scholar 

  • Hupp JT, Weydert J (1987) Optical electron transfer in mixed solvents. major energetic effects from unsymmetrical secondary coordination. Inorg Chem 26:2657–2660

    Article  Google Scholar 

  • Ingram RS, Murray RW (1998) Electroactive three-dimensional monolayers: anthraquinone ω-functionalized alkanethiolate-stabilized gold clusters. Langmuir 14:4115–4121

    Article  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 8:4370–4379

    Article  Google Scholar 

  • Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New York

    Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  • Lee C, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  Google Scholar 

  • Liao J, Zhang Y, Yu W et al (2003) Linear aggregation of gold nanoparticles in ethanol. Colloids Surf A Physicochem Eng Asp 223:177–183

    Article  Google Scholar 

  • Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12:4329–4335

    Article  Google Scholar 

  • McMahon JM, Emory SR (2007) Phase transfer of large gold nanoparticles to organic solvents with increased stability. Langmuir 23:1414–1418. doi:10.1021/la0617560

    Article  Google Scholar 

  • Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132. doi:10.1039/b604038c

    Article  Google Scholar 

  • Murphy RJ, Pristinski D, Migler K et al (2010) Dynamic light scattering investigations of nanoparticle aggregation following a light-induced pH jump. J Chem Phys 132:194903–194909

    Article  Google Scholar 

  • Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  Google Scholar 

  • Sharma J, Chaki NK, Mahima S et al (2004) Tuning the aspect ratio of silver nanostructures: the effect of solvent mole fraction and 4-aminothiophenol concentration. J Mater Chem 14:970–975

    Article  Google Scholar 

  • Templeton AC, Hostetler MJ, Kraft CT et al (1998a) Reactivity of monolayer-protected gold cluster molecules: steric effects. J Am Chem Soc 120:1906–1911

    Article  Google Scholar 

  • Templeton AC, Hostetler MJ, Warmoth EK et al (1998b) Gateway reactions to diverse, polyfunctional monolayer-protected gold clusters. J Am Chem Soc 120:4845–4849

    Article  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Turkevich J, Garton G, Stevenson PC (1964) The color of colloidal gold. J Colloid Sci 9:26–35

    Article  Google Scholar 

  • Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10:3427–3430. doi:10.1021/la00022a011

    Article  Google Scholar 

  • Weaver JH, Krafka C, Lynch DW, Koch EE (1981) Optical properties of metals. Physics Data Series No 18-2, Karlsruhe

  • Wilcoxon J (2009) Optical absorption properties of dispersed gold and silver alloy nanoparticles. J Phys Chem B 113:2647–2656

    Article  Google Scholar 

  • Yang C-S, Shih M-S, Chang F-Y (2006) Evolution study of photo-synthesized gold nanoparticles by spectral deconvolution model: a quantitative approach. New J Chem 30:729

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. F. Varela and Dr. J. Quispe (CITIUS, University of Seville) for their assistance to obtain TEM images and ζ measurements. This work was financed in part by the Oficina de Transferencia de Resultados de Investigación (2010/00000762) and by the Consejería de Educación y Ciencia de la Junta de Andalucía (P08-FQM-03623). We thank University of Sevilla for the grant of the VPPI-US.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prado-Gotor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carnerero, J.M., Castillo, P.M., Jimenez-Ruiz, A. et al. Direct effect of tetrahedral alcohol species on the SPB of gold colloids: a deconvolution study. J Nanopart Res 17, 205 (2015). https://doi.org/10.1007/s11051-015-3011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3011-8

Keywords

Navigation