Skip to main content
Log in

The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the present work, biocompatible superparamagnetic iron oxide nanoparticles coated by mesoporous silica were used as drug nanocarriers for doxorubicin (Dox; an anticancer drug) delivery. In biological media, the interaction of protein corona layer with the surface of nanoparticles is inevitable. For this reason, we studied the effect of protein corona on drug release from magnetic mesoporous silica nanoparticles (MMSNs) in human plasma medium. Besides, we used hydrophilic and biocompatible polymer, polyethylene glycol (PEG), to decrease protein corona effects. The results showed the increased Dox release from PEGylated MMSNs compared with bare MMSNs. This result indicated that the coating of PEG reduced the wrapping of the protein corona around the nanoparticles. This phenomenon caused increase in Dox release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  Google Scholar 

  • Angelos S, Choi E, Vögtle F, De Cola L, Zink JI (2007) Photo-driven expulsion of molecules from mesostructured silica nanoparticles. J Phys Chem C 111:6589–6592

    Article  Google Scholar 

  • Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M (2012) Magnetically triggered multi-drug release by hybrid mesoporous silica nanoparticles. Chem Mater 24:517–524

    Article  Google Scholar 

  • Behzadi S, Serpooshan V, Sakhtianchi R, Müller B, Landfester K, Crespy D, Mahmoudi M (2014) Protein corona change the drug release profile of nanocarriers: the ignored factor at the nanobio interface. Colloids Surf B 23:143–149

    Article  Google Scholar 

  • Berry CC, Wells S, Charles S, Curtis ASG (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557

    Article  Google Scholar 

  • Chen F, Bu W, Chen Y, Fan Y, He Q, Zhu M, Liu X, Zhou L, Zhang S, Peng W, Shi J (2009) A Sub-50-nm monosized superparamagnetic Fe3O4@SiO2T2-weighted MRI contrast agent: highly reproducible synthesis of uniform single-loaded core–shell nanostructures. Chem–An Asian J 4:1809–1816

    Article  Google Scholar 

  • Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4:6001–6013

    Article  Google Scholar 

  • Chen X, Gambhir SS, Cheon J (2011) Theranostic Nanomedicine. Acc Chem Res 44:841

    Article  Google Scholar 

  • de Almeida MPS, Caiado KL, Sartoratto PPC, Cintra e Silva DO, Pereira AR, Morais PC (2010) Preparation and size-modulation of silica-coated maghemite nanoparticles. J Alloy Compd 500:149–152

    Article  Google Scholar 

  • Dobson J (2005) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13:283–287

    Article  Google Scholar 

  • Du L, Liao S, Khatib HA, Stoddart JF, Zink JI (2009) Controlled-access hollow mechanized silica nanocontainers. J Am Chem Soc 131:15136–15142

    Article  Google Scholar 

  • Garcia MP, Miranda Parca R, Braun Chaves S, Paulino Silva L, Djalma Santos A, Guerrero Marques Lacava Z, César Morais P, Azevedo RB (2005) Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA. J Magn Magn Mater 293:277–282

    Article  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  Google Scholar 

  • Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona–core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313

    Article  Google Scholar 

  • Guedes MHA, Sadeghiani N, Peixoto DLG, Coelho JP, Barbosa LS, Azevedo RB, Kückelhaus S, Da Silva MDF, Morais PC, Lacava ZGM (2005) Effects of AC magnetic field and carboxymethyldextran-coated magnetite nanoparticles on mice peritoneal cells. J Magn Magn Mater 293:283–286

    Article  Google Scholar 

  • Gupta A, Curtis A (2004a) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15:493–496

    Article  Google Scholar 

  • Gupta AK, Curtis ASG (2004b) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25:3029–3040

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  • Harris JM, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551

    Article  Google Scholar 

  • Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44:1050–1060

    Article  Google Scholar 

  • Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin C-H, Park J-G, Kim J, Hyeon T (2005) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128:688–689

    Article  Google Scholar 

  • Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441

    Article  Google Scholar 

  • Krotz F, Wit CD, Sohn H-Y, Zahler S, Gloe T, Pohl U, Plank C (2003) Magnetofection[mdash] A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7:700–710

    Article  Google Scholar 

  • Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038

    Article  Google Scholar 

  • Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902

    Article  Google Scholar 

  • Lele BS, Kulkarni MG (1998) Single step room temperature oxidation of poly(ethylene glycol) to poly(oxyethylene)-dicarboxylic acid. J Appl Polym Sci 70:883–890

    Article  Google Scholar 

  • Leung KCF, Nguyen TD, Stoddart JF, Zink JI (2006) Supramolecular nanovalves controlled by proton abstraction and competitive binding. Chem Mater 18:5919–5928

    Article  Google Scholar 

  • Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32:7139–7150

    Article  Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging,targeting, and drug delivery. ACS Nano 2:889–896

    Article  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–1346

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112:14470–14481

    Article  Google Scholar 

  • Mahmoudi M, Shokrgozar MA, Simchi A, Imani M, Milani AS, Stroeve P, Vali H, Hafeli UO, Bonakdar S (2009a) Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol). J Phys Chem C 113:2322–2331

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Häfeli UO (2009b) Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. J Phys Chem C 113:8124–8131

    Article  Google Scholar 

  • Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2010a) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Stroeve P, Sohrabi A (2010b) Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol). Thin Solid Films 518:4281–4289

    Article  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011a) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011b) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  Google Scholar 

  • Mahmoudi M, Abdelmonem AM, Behzadi S, Clement JH, Dutz S, Ejtehadi MR, Hartmann R, Kantner K, Linne U, Maffre P, Metzler S, Moghadam MK, Pfeiffer C, Rezaei M, Ruiz-Lozano P, Serpooshan V, Shokrgozar MA, Nienhaus GU, Parak WJ (2013a) Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7:6555–6562

    Article  Google Scholar 

  • Mahmoudi M, Lohse SE, Murphy CJ, Fathizadeh A, Montazeri A, Suslick KS (2013b) Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett 14:6–12

    Article  Google Scholar 

  • Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML (2013) Protein corona significantly reduces active targeting yield. Chem Comm 49:2557–2559

    Article  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  • Nguyen TD, Tseng H-R, Celestre PC, Flood AH, Liu Y, Stoddart JF, Zink JI (2005) A reversible molecular valve. Proc Natl Acad Sci USA 102:10029–10034

    Article  Google Scholar 

  • Nguyen TD, Leung KCF, Liong M, Pentecost CD, Stoddart JF, Zink JI (2006) Construction of a pH-Driven supramolecular nanovalve. Org Lett 8:3363–3366

    Article  Google Scholar 

  • Nguyen TD, Leung KCF, Liong M, Liu Y, Stoddart JF, Zink JI (2007) Versatile supramolecular nanovalves reconfigured for light activation. Adv Funct Mater 17:2101–2110

    Article  Google Scholar 

  • Niu D, Ma Z, Li Y, Shi J (2010) Synthesis of core—shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J Am Chem Soc 132:15144–15147

    Article  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  Google Scholar 

  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11:169–183

    Article  Google Scholar 

  • Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  • Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gomis JM, Appel M, Portilho FA, Estevanato LLC, Miranda-Vilela AL, Almeida-Santos MFM, de Oliveira-Cavalcanti CE, Lacava BM, Simioni AR, Tedesco AC, Morais PC, Lacava ZGM (2011) Investigation of a magnetohyperthermia system efficacy. J Appl Phys 109:07B307

    Google Scholar 

  • Prokopowicz M, Przyjazny AJ (2007) Synthesis of sol-gel mesoporous silica materials providing a slow release of doxorubicin. Microencapsulation 24:694

    Article  Google Scholar 

  • Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M (2008) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206

    Article  Google Scholar 

  • Rosenholm JM, Peuhu E, Eriksson JE, Sahlgren C, Lindén M (2009) Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. Nano Lett 9:3308–3311

    Article  Google Scholar 

  • Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nano 8:137–143

    Article  Google Scholar 

  • Sartoratto PPC, Caiado KL, Pedroza RC, da Silva SW, Morais PC (2007) The thermal stability of maghemite-silica nanocomposites: an investigation using X-ray diffraction and Raman spectroscopy. J Alloy Compd 434–435:650–654

    Article  Google Scholar 

  • Shen S, Gu T, Mao D, Xiao X, Yuan P, Yu M, Xia L, Ji Q, Meng L, Song W, Yu C, Lu G (2011) Synthesis of nonspherical mesoporous silica ellipsoids with tunable aspect ratios for magnetic assisted assembly and gene delivery. Chem Mater 24:230–235

    Article  Google Scholar 

  • Singh N, Karambelkar A, Gu L, Lin K, Miller JS, Chen CS, Sailor MJ, Bhatia SN (2011) Bioresponsive mesoporous silica nanoparticles for triggered drug release. J Am Chem Soc 133:19582–19585

    Article  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2011) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  Google Scholar 

  • Stein A, Melde BJ, Schroden RC (2011) Hybrid inorganic-organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater 12:1403–1419

    Article  Google Scholar 

  • Taylor KML, Kim JS, Rieter WJ, An H, Lin W, Lin W (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130:2154–2155

    Article  Google Scholar 

  • Thomas CR, Ferris DP, Lee J-H, Choi E, Cho MH, Kim ES, Stoddart JF, Shin J-S, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132:10623–10625

    Article  Google Scholar 

  • Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558

    Article  Google Scholar 

  • Xenariou S, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, Geddes DM, Plank C, Alton EWFW (2006) Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 13:1545–1552

    Article  Google Scholar 

  • Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44:883–892

    Article  Google Scholar 

  • Yoo D, Lee J-H, Shin T-H, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44:863–874

    Article  Google Scholar 

  • Zhao Y-L, Stoddart JF (2009) Azobenzene-based light-responsive hydrogel system. Langmuir 25:8442–8446

    Article  Google Scholar 

  • Zhao Y-L, Li Z, Kabehie S, Botros YY, Stoddart JF, Zink JI (2010) pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles. J Am Chem Soc 132:13016–13025

    Article  Google Scholar 

  • Zhu C-L, Lu C-H, Song X-Y, Yang H-H, Wang X-R (2011) Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc 133:1278–1281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Pourjavadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourjavadi, A., Tehrani, Z.M. & Mahmoudi, N. The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating. J Nanopart Res 17, 197 (2015). https://doi.org/10.1007/s11051-015-3008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3008-3

Keywords

Navigation