Segregation phenomena in Nd–Fe–B nanoparticles

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We report on the phase stability and phase formation of Nd–Fe–B nanoparticles from the gas phase in the size range from 10 to 25 nm. Particular attention is paid to the question, if the intermetallic \(\hbox {Nd}_{2}\hbox {Fe}_{14}\hbox {B}\) phase also forms in free particles with a few nanometers in size that grow without contact to any solid or liquid matrix in a low pressure Ar atmosphere. The paper also addresses the possible influence of segregation phenomena that go along with the phase formation and the effect of (rapid) thermal annealing on the structure and phase stability of the particles. Aberration-corrected transmission electron microscopy in combination with spectroscopic methods was used to determine the local atomic structure and the chemical composition of the particles. Unheated particles are found to be mainly amorphous, while the rapidly optically annealed particles are crystalline. In both cases, we observe an enrichment of Nd in the shell of the particles and a Fe enrichment in the core. This segregation of Nd toward the particles' surface is more pronounced in heated particles, which form a clear core-shell structure with a Fe core surrounded by a \(\hbox {Nd}_{2}\hbox {O}_{3}\) shell. This finding is attributed to the comparably small surface energy and the higher affinity of Nd to oxygen as compared to Fe. A simple model is introduced and used in order to estimate these surface energies. These estimations support the experimentally observed segregation phenomena. It is further found that B prefers the vicinity of Fe over that of Nd atoms, which as a consequence leads to a B enrichment in the Fe-rich parts of the particles. Magnetic measurements show a soft magnetic behavior for both, unheated and heated Nd–Fe–B nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Akdogan NG, Hadjipanayis GC, Sellmyer DJ (2010) Novel \({\text{Nd}_{2}\text{Fe}_{14}\text{B}}\) nanoflakes and nanoparticles for the development of high energy nanocomposite magnets. Nanotechnology 21(29):295705

  2. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77(1):371–423

    Article  Google Scholar 

  3. Bieniek B, Pohl D, Schultz L, Rellinghaus B (2011) The effect of oxidation on the surface-near lattice relaxation in FeNi nanoparticles. J Nanopart Res 13(11):5935–5946

    Article  Google Scholar 

  4. Bosman M, Keast VJ (2008) Optimizing EELS acquisition. Ultramicroscopy 108(9):837–846

    Article  Google Scholar 

  5. Chen S-Y, Gloter A, Zobelli A, Wang L, Chen C-H, Colliex C (2009) Electron energy loss spectroscopy and ab initio investigation of iron oxide nanomaterials grown by a hydrothermal process. Phys Rev B 79(10):104103

    Article  Google Scholar 

  6. Coey JMD (2001) Magnetic materials. J Alloys Compd 326(1–2):2–6

    Article  Google Scholar 

  7. Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, Cambridge ISBN 9780521816144

    Google Scholar 

  8. Colliex C, Manoubi T, Ortizu C (1991) Electron-energy-loss-spectroscopy near-edge fine-structures in the iron–oxygen system. Phys Rev B 44(20):11402–11411

    Article  Google Scholar 

  9. Dempsey NM, Woodcock TG, Sepehri-Amin H, Zhang Y, Kennedy H, Givord D, Gutfleisch O (2013) High-coercivity Nd–Fe–B thick films without heavy rare earth additions. Acta Mater 61(13):4920–4927

    Article  Google Scholar 

  10. Fu X, Han X, Du Z, Feng H, Li Y (2013) Microstructural investigation of Nd-rich phase in sintered Nd–Fe–B magnets through electron microscopy. J Rare Earths 31(8):765–771

    Article  Google Scholar 

  11. Fu B-Q, Liu W, Li Z-L (2009) Calculation of the surface energy of hcp-metals with the empirical electron theory. Appl Surf Sci 255(23):9348–9357

    Article  Google Scholar 

  12. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation methods, structure and properties. Russ Chem Rev 74(6):489–520

    Article  Google Scholar 

  13. Gutfleisch O (2000) Controlling the properties of high energy density permanent magnetic materials by different processing routes. J Phys D 33(17):R157–R172

    Article  Google Scholar 

  14. Ibusuki T, Kojima S, Kitakami O, Shimada Y (2001) Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE Trans Magn 37(4):2223–2225

    Article  Google Scholar 

  15. Kang S, Shi S, Jia Z, Thomson GB, Nikles DE, Harrell JW, Li D, Poudyal N, Nandwana V, Liu JP (2007) Microstructures and magnetic alignment of \(\text{L}1_{0}\) FePt nanoparticles. J Appl Phys 101(9):09J113

  16. Krishnan G, Verheijen Ma, ten Brink GH, Palasantzas G, Kooi BJ (2013) Tuning structural motifs and alloying of bulk immiscible Mo–Cu bimetallic nanoparticles by gas-phase synthesis. Nanoscale 5(12):5375–5383

    Article  Google Scholar 

  17. Lange N (1999) Handbook of chemistry, soil science, 15th edn. McGraw-Hill Professional, New York

    Google Scholar 

  18. Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92(3–4):233–242

    Article  Google Scholar 

  19. Liu WF, Suzuki S, Machida K (2007) Magnetic properties of Nd–Fe–B film magnets prepared by RF sputtering. J Magn Magn Mater 308(1):126–130

    Article  Google Scholar 

  20. Mohn E (2012) Optische Kurzzeit-Wärmebehandlung von FePt-nanopartikeln im flug: Einfluss auf Struktur und Magnetismus. TU Dresden, IFW Dresden, PhD Thesis

  21. Mosendz O, Pisana S, Reiner JW, Stipe B, Weller D (2012) Ultra-high coercivity small-grain FePt media for thermally assisted recording. J Appl Phys 111(7):07B729

    Article  Google Scholar 

  22. Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E (2005) Design and synthesis of Janus micro- and nanoparticles. J Mater Chem 15(35–36):3745–3760

    Article  Google Scholar 

  23. Pohl D, Surrey A, Schultz L, Rellinghaus B (2012) The impact of oxygen on the morphology of gas-phase prepared Au nanoparticles. Appl Phys Lett 101(26):263105

    Article  Google Scholar 

  24. Pohl D, Wiesenhütter U, Mohn E, Schultz L, Rellinghaus B (2014) Near-surface strain in icosahedra of binary metallic alloys: segregational versus intrinsic effects. Nano Lett 14(4):1776–1784

    Article  Google Scholar 

  25. Rellinghaus B, Stappert S, Wassermann EF, Sauer H, Spliethoff B (2001) The effect of oxidation on the structure of nickel nanoparticles. Phys J D 252:249–252

    Google Scholar 

  26. Rellinghaus B, Mohn E, Schultz L, Gemming T, Acet M, Kowalik A, Kock BFF (2006) On the L10 ordering kinetics in Fe–Pt nanoparticles. IEEE Trans Magn 42(10):3048–3050

    Article  Google Scholar 

  27. Roh K, Martin DC, Lahann J (2005) Biphasic Janus particles with nanoscale anisotropy. Nat Mater 4(10):759–763

    Article  Google Scholar 

  28. Rong C, Li D, Nandwana V, Poudyal N, Ding Y, Wang ZL, Liu JP (2006) Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv Mater 18(22):2984–2988

    Article  Google Scholar 

  29. Schmidt F (2013) Optimierung des Lichtofens für das optische Heizen von Nanopartikeln im Flug und seine Anwendung bei der Herstellung von Nd–Fe–B-Partikeln. TU Dresden, IFW Dresden, Diploma Thesis

  30. Sepehri-Amin H, Ohkubo T, Shima T, Hono K (2012) Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet. Acta Mater 60(3):819–830

    Article  Google Scholar 

  31. Swaminathan V, Deheri PK, Bhame SD, Ramanujan RV (2013) Novel microwave assisted chemical synthesis of \(\text{Nd}_{2}\text{Fe}_{14}\text{B}\) hard magnetic nanoparticles. Nanoscale 5(7):2718–2725

  32. Weller D, Moser A, Folks L, Best ME, Toney MF, Schwickert M, Doerner MF (2000) High \(\text{K}_{{\rm u}}\) materials approach to \(100\,\text{Gbits/in}^2\). IEEE Trans Magn 36(1):10–15

  33. Woodcock TG, Khlopkov K, Walther a, Dempsey NM, Givord D, Schultz L, Gutfleisch O (2009) Interaction domains in high-performance NdFeB thick films. Scripta Mater 60(9):826–829

    Article  Google Scholar 

  34. Woodcock TG, Zhang Y, Hrkac G, Ciuta G, Dempsey NM, Schrefl T, Givord D (2012) Understanding the microstructure and coercivity of high performance NdFeB-based magnets. Scripta Mater 67(6):536–541

    Article  Google Scholar 

  35. Yu M, Liu Y, Liou SH, Sellmyer DJ (1998) Nanostructured NdFeB films processed by rapid thermal annealing. J Appl Phys 83(11):6611–6613

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Schmidt.

Appendix

Appendix

The surface energy is estimated by determining the change in energy per area upon breaking all bonds between the atoms within a given facet and those in the “disconnected” hemisphere. For this at first, the individual binding energy, \(W_{{\rm at}-{\rm at}}\), is calculated from the (molar) heat of atomization, \(\Delta _{{\rm at}}H\), per bond of a dedicated surface atom

$$\begin{aligned} \text{Heat of atomization per atom:}\; \Delta_{\rm{at}}{h}=\frac{\Delta_{\rm{at}}{H}}{N_A} \\ \text{Binding energy per bond:}\; W_{{\rm{at}}-{\rm at}}=\frac{\Delta _{\rm{at}}{h}}{\beta} \end{aligned}$$

Here, \({\Delta _\mathrm{at}H},\,{N_A}\), and \({\beta }\) are heat of atomization of the involved elements, which represents the binding energy per mole, the Avogadro number, and the coordination number, respectively. Based on this, the surface energy is calculated as the total change in energy, W, per area, A, i.e., \({\gamma =\frac{W}{A}}\), and it follows:

$$\begin{aligned} \gamma&=\frac{1}{2} \cdot \alpha \cdot N_{\mathrm{bb}} \cdot W_{\mathrm{at-at}}\; \text { with }\; \alpha =\frac{N_{\mathrm{at}}}{A} \\ \gamma&=\frac{1}{2} \cdot \frac{N_{\mathrm{at}} \cdot N_{\mathrm{bb}} \cdot W_{\mathrm{at-at}}}{A} \\ \gamma&=\frac{1}{2} \cdot \frac{N_{\mathrm{at}} \cdot N_{\mathrm{bb}} \cdot \frac{\Delta _{\mathrm{at}}H}{N_{\mathrm{A}} \cdot \beta }}{A} \end{aligned}$$

The (molar) heats of atomization are available in the literature, while the number of atoms, \(N_\mathrm{at}\), within an area, \(A\), of a given facet and the number of broken bonds, \(N_\mathrm{bb}\), have to be determined from the crystal structure. An illustration of the lattice planes of interest and the broken bonds of the involved atoms is shown in Fig. 13.

The results of these estimations for the surface energy are summarized in Table 1. Although the absolute values differ from the results of empirical electron theory, the general trend and thus the relative preference of the various facets are in perfect agreement with the results of Fu et al. (2009).

Table 1 Summary of the calculation of surface energies of bcc Fe and hcp Nd

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmidt, F., Pohl, D., Schultz, L. et al. Segregation phenomena in Nd–Fe–B nanoparticles. J Nanopart Res 17, 170 (2015). https://doi.org/10.1007/s11051-015-2977-6

Download citation

Keywords

  • Nd–Fe–B
  • Nanoparticles
  • Segregation
  • Core-shell
  • Transmission electron microscopy
  • Nanomagnetism
  • Phase separation
  • Janus