Kinetics of sub-2 nm TiO2 particle formation in an aerosol reactor during thermal decomposition of titanium tetraisopropoxide

Abstract

Particle size distribution measurements from differential mobility analyzers (DMAs) can be utilized to study particle formation mechanisms. However, knowledge on the initial stages of particle formation is incomplete, since in conventional DMAs, the Brownian broadening effect limits their ability to measure sub-2 nm-sized particles. Previous studies have demonstrated the capability of high-flow DMAs, such as the Half Mini DMAs, to measure sub-2 nm particles with significantly higher resolutions than conventional DMAs. A Half Mini DMA was applied to study the kinetics of sub-2 nm TiO2 nanoparticle formation in a furnace aerosol reactor, through the thermal decomposition of titanium tetraisopropoxide (TTIP). The influence of parameters such as reaction temperature, residence time, precursor concentration, and the introduction of bipolar charges on sub-2 nm particle size distributions were studied. A first order reaction rate derived from the dependence of size distributions on reaction temperature matched well with existing literature data. The change in precursor residence time and precursor concentration altered the size distributions correspondingly, indicating the occurrence of TTIP thermal decomposition. The introduction of bipolar charges in aerosol reactors enhanced the consumption of reactants, possibly due to ion-induced nucleation and induced dipole effects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adachi M, Tsukui S, Okuyama K (2003) Nanoparticle formation mechanism in CVD reactor with ionization of source vapor. J Nanopart Res 5(1–2):31–37

    Article  Google Scholar 

  2. Adachi M, Kusumi M, Tsukui S (2004) Ion-induced nucleation in nanoparticle synthesis by ionization chemical vapor deposition. Aerosol Sci Technol 38(5):496–505

    Article  Google Scholar 

  3. Ahn K, Sohn S, Jung C, Choi M (2001) In situ measurement of nano particle size distribution and charge characteristics in H2/O2/TEOS diffusion flame. Scripta Mater 44(8):1889–1892

    Article  Google Scholar 

  4. Attoui M, Paragano M, Cuevas J, de la Mora JF (2011) Tandem DMA generation of strictly monomobile 1–3.5 nm particle standards. Aerosol Sci Technol 47(5):499–511

    Article  Google Scholar 

  5. Bradbury NE (1932) The absolute values of the mobility of gaseous ions in pure gases. Phys Rev 40(4):508

    Article  Google Scholar 

  6. Chadha TS, Tripathi AM, Sagar M, Biswas P (2014) One‐dimensional, additive‐free, single‐crystal TiO2 nanostructured anodes synthesized by a single‐step aerosol process for high‐rate lithium‐ion batteries. Energy Technol 2(11):906–911

  7. Cho K, Biswas P (2006) Sintering rates for pristine and doped titanium dioxide determined using a tandem differential mobility analyzer system. Aerosol Sci Technol 40(5):309–319

    Article  Google Scholar 

  8. Cho K, Hogan CJ Jr, Biswas P (2007) Study of the mobility, surface area, and sintering behavior of agglomerates in the transition regime by tandem differential mobility analysis. J Nanopart Res 9(6):1003–1012

    Article  Google Scholar 

  9. Eggersdofer ML, Gröhn AJ, Sorensen CM, McMurry PH, Pratsinis SE (2012) Mass-mobility characterization of flame-made ZrO2 aerosols: Primary particle diameter and extent of aggregation. J Colloid Interface Sci 387(1):12–23

    Article  Google Scholar 

  10. Eiceman GA, Karpas Z, Hill HH Jr (2013) Ion mobility spectrometry. CRC Press, Boca Raton

    Google Scholar 

  11. Enghoff M, Svensmark H (2008) The role of atmospheric ions in aerosol nucleation—a review. Atmos Chem Phys 8(16):4911–4923

    Article  Google Scholar 

  12. Fang J, Leavey A, Biswas P (2014a) Controlled studies on aerosol formation during biomass pyrolysis in a flat flame reactor. Fuel 116:350–357

    Article  Google Scholar 

  13. Fang J, Wang Y, Attoui M, Chadha TS, Ray J, Wang WN, Jun YS, Biswas P (2014b) Measurement of sub 2 nm clusters of pristine and composite metal oxides during nanomaterials synthesis in flame aerosol reactors. Anal Chem 86(15):7523–7529

    Article  Google Scholar 

  14. Fernandez de la Mora J (2011) Electrical classification and condensation detection of sub‐3‐nm aerosols. In: Aerosol measurement: principles, techniques, and applications, 3rd edn, pp 697–721

  15. Fernández de la Mora J, Kozlowski J (2013) Hand-held differential mobility analyzers of high resolution for 1–30 nm particles: design and fabrication considerations. J Aerosol Sci 57:45–53

    Article  Google Scholar 

  16. Freund H, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37(10):2224–2242

    Article  Google Scholar 

  17. Fuchs N (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofis Pura Appl 56(1):185–193

    Article  Google Scholar 

  18. Gopalakrishnan R, Meredith MJ, Larriba-Andaluz C, Hogan CJ Jr (2013) Brownian dynamics determination of the bipolar steady state charge distribution on spheres and non-spheres in the transition regime. J Aerosol Sci 63:126–145

    Article  Google Scholar 

  19. Heim M, Attoui M, Kasper G (2010) The efficiency of diffusional particle collection onto wire grids in the mobility equivalent size range of 1.2–8 nm. J Aerosol Sci 41(2):207–222

    Article  Google Scholar 

  20. Hogan CJ Jr, Biswas P, Chen DR (2009) Charged droplet dynamics in the submicrometer size range. J Phys Chem B 113(4):970–976

    Article  Google Scholar 

  21. Hontañón E, Rouenhoff M, Azabal A, Ramiro E, Kruis FE (2013) Assessment of a cylindrical and a rectangular plate differential mobility analyzer for size fractionation of nanoparticles at high aerosol flow rates. Aerosol Sci Technol 48(3):333–339

    Article  Google Scholar 

  22. Jiang J, Chen DR, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18(28):285603

    Article  Google Scholar 

  23. Jiang Y, Wang WN, Biswas P, Fortner J (2014) Facile aerosol synthesis and characterization of ternary crumpled graphene-TiO2-magnetite nanocomposites for advanced water treatment. ACS Appl Mater Inter 6(14):11766–11774

    Article  Google Scholar 

  24. Junninen H et al (2010) A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos Meas Tech 3(4):1039–1053

    Article  Google Scholar 

  25. Kallinger P, Setiner G, Szymanski W (2012) Characterization of four different bipolar charging devices for nanoparticle charge conditioning. J Nanopart Res 14(6):1–8

    Article  Google Scholar 

  26. Kilpatrick W (1971) An experimental mass-mobility relation for ions in air at atmospheric pressure. Proc Annu Conf Mass Spectrosc 19:320–325

    Google Scholar 

  27. Kim S, Betty K, Karasek F (1978) Mobility behavior and composition of hydrated positive reactant ions in plasma chromatography with nitrogen carrier gas. Anal Chem 50(14):2006–2012

    Article  Google Scholar 

  28. Kim S, Woo K, Liu B, Zachariah M (2005) Method of measuring charge distribution of nanosized aerosols. J Colloid Interface Sci 282(1):46–57

    Article  Google Scholar 

  29. Knutson E, Whitby K (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci 6(6):443–451

    Article  Google Scholar 

  30. Larriba C, Hogan CJ Jr (2013) Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models. J Phys Chem A 117(19):3887–3901

    Article  Google Scholar 

  31. Larriba C, Hogan CJ Jr, Attoui M, Borrajo R, Garcia JF, de la Mora JF (2011) The mobility–volume relationship below 3.0 nm examined by tandem mobility–mass measurement. Aerosol Sci Technol 45(4):453–467

    Article  Google Scholar 

  32. Mädler L, Stark WJ, Pratsinis SE (2002) Flame-made ceria nanoparticles. J Mater Res 17(06):1356–1362

    Article  Google Scholar 

  33. Mäkelä JM, Jokinen V, Mattila T, Ukkonen A, Keskinen J (1996) Mobility distribution of acetone cluster ions. J Aerosol Sci 27(2):175–190

    Article  Google Scholar 

  34. Manninen H et al (2011) Characterisation of corona-generated ions used in a neutral cluster and air ion spectrometer (NAIS). Atmos Meas Tech Discuss 4(2):2099–2125

    Article  Google Scholar 

  35. Maricq M (2004) Size and charge of soot particles in rich premixed ethylene flames. Combust Flame 137(3):340–350

    Article  Google Scholar 

  36. Maricq MM (2008) Bipolar diffusion charging of soot aggregates. Aerosol Sci Technol 42(4):247–254

    Article  Google Scholar 

  37. Moravec P, Smolík J, Levdansky V (2001) Preparation of TiO2 fine particles by thermal decomposition of titanium tetraisopropoxide vapor. J Mater Sci Lett 20(22):2033–2037

    Article  Google Scholar 

  38. Nakaso K, Okuyama K, Shimada M, Pratsinis SE (2003) Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chem Eng Sci 58(15):3327–3335

    Article  Google Scholar 

  39. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353:737–740

    Article  Google Scholar 

  40. Okuyama K, Jeung J-T, Kousaka Y, Nguyen HV, Wu JJ, Flagan RC (1989) Experimental control of ultrafine TiO2 particle generation from thermal decomposition of titanium tetraisopropoxide vapor. Chem Eng Sci 44(6):1369–1375

    Article  Google Scholar 

  41. Okuyama K, Ushio R, Kousaka Y, Flagan RC, Seinfeld JH (1990) Particle generation in a chemical vapor deposition process with seed particles. AIChE J 36(3):409–419

    Article  Google Scholar 

  42. Ouyang H, Larriba C, Oberreit D, Hogan CJ Jr (2013) The collision cross sections of iodide salt cluster ions in air via differential mobility analysis-mass spectrometry. J Am Soc Mass Spectrom 24(12):1833–1847

    Article  Google Scholar 

  43. Romay FJ, Pui DY (1992) Free electron charging of ultrafine aerosol particles. J Aerosol Sci 23(7):679–692

    Article  Google Scholar 

  44. Sahu M, Biswas P (2011) Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res Lett 6(1):1–14

    Google Scholar 

  45. Sgro L, De Filippo A, Lanzuolo G, D’Alessio A (2007) Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis. P Combust Inst 31(1):631–638

    Article  Google Scholar 

  46. Siefering K, Griffin G (1990) Growth kinetics of CVD TiO2: influence of carrier gas. J Electrochem Soc 137(4):1206–1208

    Article  Google Scholar 

  47. Steiner G, Reischl GP (2012) The effect of carrier gas contaminants on the charging probability of aerosols under bipolar charging conditions. J Aerosol Sci 54:21–31

    Article  Google Scholar 

  48. Steiner G, Jokinen T, Junninen H, Sipilä M, Petäjä T, Worsnop D, Reischl G, Kulmala M (2013) High resolution mobility and mass spectrometry of negative ions produced in an 241Am aerosol charger. Aerosol Sci Technol 48(3):261–270

    Article  Google Scholar 

  49. Stolzenburg MR (1988) An ultrafine aerosol size distribution measuring system. Ph.D. thesis, University of Minnesota

  50. Stolzenburg MR, McMurry PH (2008) Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci Technol 42(6):421–432

    Article  Google Scholar 

  51. Takahashi Y, Suzuki H, Nasu M (1985) Rutile growth at the surface of TiO2 films deposited by vapour-phase decomposition of isopropyl titanate. J Chem Soc 81(12):3117–3125

    Google Scholar 

  52. Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: Performance of dye-sensitized solar cells and photo watersplitting. J Phys Chem C 112(11):4134–4140

    Article  Google Scholar 

  53. Ude S, De la Mora JF (2005) Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J Aerosol Sci 36(10):1224–1237

    Article  Google Scholar 

  54. Vishnyakov V, Kiro S, Ennan A (2011) Heterogeneous ion-induced nucleation in thermal dusty plasmas. J Phys D 44(21):215201

    Article  Google Scholar 

  55. Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13(2):230–240

    Article  Google Scholar 

  56. Wang WN, An WJ, Ramalingam B, Mukherjee S, Niedzwiedzki DM, Gangopadhyay S, Biswas P (2012) Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J Am Chem Soc 134(27):11276–11281

    Article  Google Scholar 

  57. Wang Y, Fang J, Attoui M, Chadha TS, Wang W-N, Biswas P (2014) Application of Half Mini DMA for sub 2 nm particle size distribution measurement in an electrospray and a flame aerosol reactor. J Aerosol Sci 71:52–64

    Article  Google Scholar 

  58. Wegner K, Pratsinis SE (2003) Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem Eng Sci 58(20):4581–4589

    Article  Google Scholar 

  59. Wiedensohler A, Fissan H (1991) Bipolar charge distributions of aerosol particles in high-purity argon and nitrogen. Aerosol Sci Technol 14(3):358–364

    Article  Google Scholar 

  60. Winkler PM, Steiner G, Vrtala A, Vehkamäki H, Noppel M, Lehtinen K, Reischl G, Wagner P, Kulmala M (2008) Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319(5868):1374–1377

    Article  Google Scholar 

  61. Zeleny J (1931) The aging of ions in air and nitrogen. Phys Rev 38(5):969

    Article  Google Scholar 

  62. Zhang X, Zheng H, Battaglia V, Axelbaum RL (2011a) Electrochemical performance of spinel LiMn2O4 cathode materials made by flame-assisted spray technology. J Power Sources 196(7):3640–3645

    Article  Google Scholar 

  63. Zhang Y, Li S, Yan W, Yao Q, Stephen DT (2011b) Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime. J Chem Phys 134(8):084501

    Article  Google Scholar 

  64. Zhao B, Yang Z, Wang J, Johnston MV, Wang H (2003) Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer. Aerosol Sci Technol 37(8):611–620

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Michel Attoui from University Paris Est Creteil for his ideas and kind help on building the Half Mini DMA setup. Y.W. thanks Dr. Chongai Kuang from Brookhaven National Laboratory for the opportunity to discuss experimental results. This work was supported by the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pratim Biswas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, P., Fang, J. et al. Kinetics of sub-2 nm TiO2 particle formation in an aerosol reactor during thermal decomposition of titanium tetraisopropoxide. J Nanopart Res 17, 147 (2015). https://doi.org/10.1007/s11051-015-2964-y

Download citation

Keywords

  • Sub-2 nm particles
  • Differential mobility analyzer (DMA)
  • Size distribution
  • Furnace aerosol reactor
  • Titanium tetraisopropoxide (TTIP)
  • Particle formation and growth