Skip to main content
Log in

Effect of solvent and silicon substrate surface on the size of iron nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The diameter of carbon nanotubes is strongly related the geometric sizes of the metal particles upon which they are nucleated. To improve the control over the nanoparticle sizes derived from iron acetate and deposited on Si substrates, two different approaches were employed; manipulation of the solvent chemistry and manipulation of the Si substrate surface. The iron acetate was dissolved separately in pure water and ethanol and in binary ethanol/water mixtures. Silicon substrates, with either smooth surface or nano-porous surface, were dip coated using these solutions. The dip-coated substrates were first thermally oxidised at 400 °C in air followed by reduction at 800 °C in an Ar/H2 gas mixture. As derived particles were measured by scanning electron microscopy, and the average size and size distribution were determined by statistical analysis. Electron microscopy and statistical analyses demonstrated that metal particles deposited onto the smooth Si wafer have sizes ranging from 18 to 160 nm based on the solvent used, where the pure solvents resulted in a narrower size distribution when compared to the water/ethanol mixtures. When nano-porous Si wafer is used as a substrate, the metal particle diameter distributions are reduced to a range from 11 to 17 nm contingent upon the solvent used. The role of the ethanol/water interactions investigated by vibrational (IR and Raman) and 1H nuclear magnetic resonance spectroscopy on nanoparticle sizes and size distributions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arcos Tdl et al (2002) Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapour deposition. Appl Phys Lett 80:2383–2385

    Article  Google Scholar 

  • Chiang W-H, Mohan Sankaran R (2009) Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles. Nat Mater 8:882–886

    Article  Google Scholar 

  • Cipiciani A, Onori G, Savelli G (1988) Structural properties of water-ethanol mixtures: a correlation with the formation of micellar aggregates. Chem Phys Lett 143:505–509. doi:10.1016/0009-2614(88)87404-9

    Article  Google Scholar 

  • Coccia A, Indovina PL, Podo F, Viti V (1975) PMR studies on the structures of water-ethyl alcohol mixtures. Chem Phys 7:30–40. doi:10.1016/0301-0104(75)85022-1

    Article  Google Scholar 

  • D’Angelo M, Onori G, Santucci A (1994) Self association of monohydric alcohols in water: Compressibility and infrared absorption measurements. J Chem Phys 100:3107–3113. doi:10.1063/1.466452

    Article  Google Scholar 

  • Dixit S, Crain J, Poon WCK, Finney JL, Soper AK (2002) Molecular segregation observed in a concentrated alcohol–water solution. Nature 416:829–832

    Article  Google Scholar 

  • Egashira K, Nishi N (1998) Low-frequency Raman spectroscopy of ethanol–water binary solution: evidence for Self-association of solute and solvent molecules. J Phys Chem B 102:4054–4057. doi:10.1021/jp9806359

    Article  Google Scholar 

  • Falk M (1984) The frequency of the H·O·H bending fundamental in solids and liquids. Spectrochim Acta Part A 40:43–48. doi:10.1016/0584-8539(84)80027-6

    Article  Google Scholar 

  • Franks F, Ives DJG (1966) The structural properties of alcohol–water mixtures. Q Rev Chem Soc 20:1–44. doi:10.1039/QR9662000001

    Article  Google Scholar 

  • Husnu Emrah U, Manish c (2005) Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology 16:2153

    Article  Google Scholar 

  • Jia Y (2011) Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10 % efficiency. Appl Phys Lett 98:133115

    Article  Google Scholar 

  • Kahlweit M, Busse G, Jen J (1991) Adsorption of amphiphiles at water/air interfaces. J Phys Chem 95:5580–5586. doi:10.1021/j100167a040

    Article  Google Scholar 

  • Kamogawa K, Kaminaka S, Kitagawa T (1987) Behavior of ethanol in various binary solutions: difference Raman spectroscopy on the C–H stretching vibrations. J Phys Chem 91:222–226. doi:10.1021/j100285a047

    Article  Google Scholar 

  • Kim DY et al (2005) Preparation of uniformly dispersed iron-acetate nanoparticles using freeze-drying method for the growth of carbon nanotubes. Diam Relat Mater 14:810–814

    Article  Google Scholar 

  • Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654

    Article  Google Scholar 

  • Martin PJ, Bendavid A (2001) Review of the filtered vacuum arc process and materials deposition. Thin Solid Films 394:1–14. doi:10.1016/S0040-6090(01)01169-5

    Article  Google Scholar 

  • Martin PJ, Bendavid A, Comte C, Miyata H, Asao Y, Ishida Y, Sakai A (2007) Alignment and switching behaviors of liquid crystal on a-SiO[sub x] thin films deposited by a filtered cathodic arc process. Appl Phys Lett 91:063513–063516

    Article  Google Scholar 

  • Mizuno K, Miyashita Y, Shindo Y, Ogawa H (1995) NMR and FT-IR studies of hydrogen bonds in ethanol–water mixtures. J Phys Chem 99:3225–3228

    Article  Google Scholar 

  • Morjan RE, Nerushev OA, Sveningsson M, Rohmund F, Falk LKL, Campbell EEB (2004) Growth of carbon nanotubes from C60. Appl Phys A 78:253–261. doi:10.1007/s00339-003-2297-z

    Article  Google Scholar 

  • Murakami Y, Miyauchi Y, Chiashi S, Maruyama S (2003) Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem Phys Lett 377:49–54

    Article  Google Scholar 

  • Rümmeli MH et al (2007) Catalyst size dependencies for carbon nanotube synthesis. Phys Status Solidi (b) 244:3911–3915

    Article  Google Scholar 

  • Saito T, Horie R, Den T, Bendavid A, Preston E, Martin PJ (2009) Phase separated AlSi thin films prepared by filtered cathodic arc deposition. Thin Solid Films 517:1567–1571

    Article  Google Scholar 

  • Seah C-M, Chai S-P, Ichikawa S, Mohamed A (2012) Growth of uniform thin-walled carbon nanotubes with spin-coated Fe catalyst and the correlation between the pre-growth catalyst size and the nanotube diameter. J Nanopart Res 15:1–10. doi:10.1007/s11051-012-1371-x

    Google Scholar 

  • Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Dickey EC, Derbyshire F (1999) Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 315:25–30. doi:10.1016/S0009-2614(99)01216-6

    Article  Google Scholar 

  • Umemura J, Mantsch HH, Cameron DG (1981) Micelle formation in aqueous n-alkanoate solutions: A fourier transform infrared study. J Colloid Interface Sci 83:558–568. doi:10.1016/0021-9797(81)90350-7

    Article  Google Scholar 

  • Wakisaka A, Matsuura K (2006) Microheterogeneity of ethanol–water binary mixtures observed at the cluster leve. Journal of Molecular Liquids 129:25–32. doi:10.1016/j.molliq.2006.08.010

    Article  Google Scholar 

  • Wakisaka A, Ohki T (2005) Phase separation of water-alcohol binary mixtures induced by the microheterogeneity. Faraday Discuss 129:231–245. doi:10.1039/B405391E

    Article  Google Scholar 

  • Wakisaka A, Komatsu S, Usui Y (2001) Solute–solvent and solvent–solvent interactions evaluated through clusters isolated from solutions: preferential solvation in water–alcohol mixtures. J Mol Liq 90:175–184. doi:10.1016/S0167-7322(01)00120-9

    Article  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  Google Scholar 

  • Yu Y, Lin K, Zhou X, Wang H, Liu S, Ma X (2007) New C–H stretching vibrational spectral features in the Raman spectra of gaseous and liquid ethanol. J Phys Chem C 111:8971–8978. doi:10.1021/jp0675781

    Article  Google Scholar 

  • Zana R, Eljebari MJ (1993) Fluorescence probing investigation of the self-association of alcohols in aqueous solution. J Phys Chem 97:11134–11136. doi:10.1021/j100144a039

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the UWS PhD scholarship for Mr Phillip Newman and the UWS Advanced Materials Characterisation Facility (AMCF) for access to instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriyan Milev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, P., Milev, A., Kannangara, K. et al. Effect of solvent and silicon substrate surface on the size of iron nanoparticles. J Nanopart Res 17, 164 (2015). https://doi.org/10.1007/s11051-015-2963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2963-z

Keywords

Navigation