Skip to main content

Biodistribution, cellular localization, and in vivo tolerability of 35S-labeled antiinflammatory dendritic polyglycerol sulfate amine

Abstract

Antiinflammatory dendritic polyglycerol sulfate (dPGS) holds great potential in the treatment and imaging of inflammatory processes. Here, we studied its biokinetic behavior, biodistribution, target cells, and in vivo toxicology. Following intravenous or subcutaneous application of 35sulfur-labeled dPGS amine with a molecular weight of 10.05 kDa and a hydrodynamic diameter of 5.7 ± 1.5 nm to mice, tissues were collected at specific time points (2, 15 min; 1, 24 h; 5, 21 days) and analyzed by liquid scintillation counting, autoradiography, radioluminography, and light microscopic autoradiography. The blood half-life of dPGS amine was 12 days. The major route of elimination was via the bile and feces. Elimination via the kidney and urine was only initially observed after i.v., but not after s.c. injection. Regardless of the administration mode, liver and spleen were late target organs where dPGS amine accumulated in phagocytic cells. Despite bioaccumulation, toxicological histopathology failed to identify any adverse effects at any time and in any tissues examined suggesting a high in vivo biocompatibility and encouraging future investigation for biomedical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

C max :

Maximum concentration

dPGS:

Dendritic polyglycerol sulfate

HE:

Hematoxylin and eosin

ID:

Injected dose

i.v.:

Intravenous

LMA:

Light microscopic autoradiography

LSC:

Liquid scintillation counting

MPS:

Mononuclear phagocyte system

NP:

Nanoparticle

p.a.:

Post administration

PSP:

Photostimulable phosphor plate

s.c.:

Subcutaneous

SD:

Standard deviation

SOA:

Single-organ autoradiography

References

  • Atkins GL (1974) Multicompartment models for biological systems. Methuen, Chapman and Hall

    Google Scholar 

  • Bancroft JD, Gamble M (2007) Theory and practice of histological techniques, 6th edn. Churchill Livingstone Elsevier, London

    Google Scholar 

  • Biffi S et al (2013) Dendritic polyglycerolsulfate near infrared fluorescent (NIRF) dye conjugate for non-invasively monitoring of inflammation in an allergic asthma mouse model. PLoS One 8:e57150. doi:10.1371/journal.pone.0057150

    Article  Google Scholar 

  • Calderón M, Quadir MA, Sharma SK, Haag R (2010) Dendritic Polyglycerols for Biomedical Applications. Adv Mater 22:190–218. doi:10.1002/adma.200902144

    Article  Google Scholar 

  • Cho M et al (2009) The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 189:177–183. doi:10.1016/j.toxlet.2009.04.017

    Article  Google Scholar 

  • Dernedde J et al (2010) Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci USA 107:19679–19684. doi:10.1073/pnas.1003103107

    Article  Google Scholar 

  • Fox ME, Szoka FC, Fréchet JMJ (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42:1141–1151. doi:10.1021/ar900035f

    Article  Google Scholar 

  • Gröger D et al (2013) Synthesis and biological evaluation of radio and dye labeled amino functionalized dendritic polyglycerol sulfates as multivalent anti-inflammatory compounds. Bioconjug Chem 24:1507–1514. doi:10.1021/bc400047f

    Article  Google Scholar 

  • Holzhausen C, Gröger D, Mundhenk L, Welker P, Haag R, Gruber AD (2013) Tissue and cellular localization of nanoparticles using 35S labeling and light microscopic autoradiography. Nanomedicine 9:465–468

    Article  Google Scholar 

  • Jani P, Nomura T, Yamashita F, Takakura Y, Hashida M, Florence A (1996) Biliary excretion of polystyrene microspheres with covalently linked FITC fluorescence after oral and parenteral administration to male Wistar rats. J Drug Target 4:87–93. doi:10.3109/10611869609046266

    Article  Google Scholar 

  • Jock Thomson PBC (2001) Use and preparation of quench curves in liquid scintillation counting. http://www.ehs.psu.edu/radprot/Packard_quench_curves_calibration.pdf. Accessed 18 Jun 2013

  • Kainthan RK, Brooks DE (2007) In vivo biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28:4779–4787. doi:10.1016/j.biomaterials.2007.07.046

    Article  Google Scholar 

  • Khandare J, Mohr A, Calderón M, Welker P, Licha K, Haag R (2010) Structure-biocompatibility relationship of dendritic polyglycerol derivatives. Biomaterials 31:4268–4277. doi:10.1016/j.biomaterials.2010.02.001

    Article  Google Scholar 

  • Kolbe H, Dietzel G (2000) Technical validation of radioluminography systems. Regul Toxicol Pharmacol 31:S5–S14. doi:10.1006/rtph.2000.1380

    Article  Google Scholar 

  • Levy G, Gibaldi M, Jusko WJ (1969) Multicompartment pharmacokinetic models and pharmacologic effects. J Pharm Sci 58:422–424. doi:10.1002/jps.2600580406

    Article  Google Scholar 

  • Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504. doi:10.1021/mp800049w

    Article  Google Scholar 

  • Licha K et al (2011) Fluorescence imaging with multifunctional polyglycerol sulfates: novel polymeric near-IR probes targeting inflammation. Bioconjug Chem 22:2453–2460. doi:10.1021/bc2002727

    Article  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717. doi:10.2217/17435889.3.5.703

    Article  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270. doi:10.1073/pnas.0805135105

    Article  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47. doi:10.1016/s1748-0132(08)70014-8

    Article  Google Scholar 

  • Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    Article  Google Scholar 

  • Müller RH, Wallis KH (1993) Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int J Pharm 89:25–31. doi:10.1016/0378-5173(93)90304-x

    Article  Google Scholar 

  • Müller RH, Rühl D, Lück M, Paulke BR (1997) Influence of fluorescent labelling of polystyrene particles on phagocytic uptake surface hydrophobicity, and plasma protein adsorption. Pharm Res 14:18–24. doi:10.1023/a:1012043131081

    Article  Google Scholar 

  • Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  Google Scholar 

  • Owens Iii DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102. doi:10.1016/j.ijpharm.2005.10.010

    Article  Google Scholar 

  • Quadir MA, Haag R (2012) Biofunctional nanosystems based on dendritic polymers. J Control Release 161:484–495. doi:10.1016/j.jconrel.2011.12.040

    Article  Google Scholar 

  • Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4:10

    Article  Google Scholar 

  • Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H (2009) Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine 5:162–169

    Article  Google Scholar 

  • Toutain PL, Bousquet-MÉLou A (2004) Plasma terminal half-life. J Vet Pharmacol Ther 27:427–439. doi:10.1111/j.1365-2885.2004.00600.x

    Article  Google Scholar 

  • Van Aubel RAMH, Masereeuw R, Russel FGM (2000) Molecular pharmacology of renal organic anion transporters. Am J Physiol Renal Physiol 279:F216–F232

    Google Scholar 

  • Weinhart M, Gröger D, Enders S, Dernedde J, Haag R (2011a) Synthesis of dendritic polyglycerol anions and their efficiency toward L-selectin inhibition. Biomacromolecules 12:2502–2511. doi:10.1021/bm200250f

    Article  Google Scholar 

  • Weinhart M et al (2011b) The role of dimension in multivalent binding events: structure-activity relationship of dendritic polyglycerol sulfate binding to L-selectin in correlation with size and surface charge density. Macromol Biosci 11:1088–1098. doi:10.1002/mabi.201100051

    Article  Google Scholar 

  • Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606. doi:10.1002/jps.2600830432

    Article  Google Scholar 

Download references

Acknowledgments

We thank Adelheid Hagenbach and Ulrich Abram for support by the Liquid Scintillation Counting technique and construction of radioactive dPG35S amine as well as Nancy A. Erickson for helpful discussions.

This work was supported by the Helmholtz Virtual Institute on “Multifunctional Polymers in Medicine” and the FU Focus Area “Nanoscale”, the collaborative research centers SFB 765 and SFB 1112 (A02, C03) of the German Science Foundation (DFG) and the DFG Priority Program 1313 Biological Responses to Nanoscale Particles.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim D. Gruber.

Additional information

Cornelia Holzhausen: this article is part of the Ph.D thesis of CH.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holzhausen, C., Gröger, D., Mundhenk, L. et al. Biodistribution, cellular localization, and in vivo tolerability of 35S-labeled antiinflammatory dendritic polyglycerol sulfate amine. J Nanopart Res 17, 116 (2015). https://doi.org/10.1007/s11051-015-2927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2927-3

Keywords

  • Nanoparticle
  • Radiolabeling
  • Liquid scintillation counting
  • Radioluminography
  • Nanotoxicology
  • Health effects