Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique

Abstract

The photochemical synthesis of gold nanoparticles was transferred into a three-step micro-continuous flow process. A solution of tetrachloroaurate and a solution of a photoinitiator and polyvinylpyrrolidone were mixed within micro-fluid segments using a cross-injector. The segments (0.5 mm inner diameter) pass a focused UV ray after a short mixing by means of segment-internal convection. The nucleation of nanoparticles was initiated by this exposure, which lasted 30–300 ms depending on the applied flow rate. The growth of nanoparticles was completed by the passage of a residence loop of a length of 0.5 m. The obtained colloidal product solution was characterized by UV/VIS spectrophotometry, centrifugal sedimentation spectroscopy, dynamic light scattering, and SEM/TEM. In result, small gold nanoparticles with enhanced quality, compared to photochemical batch experiments, were obtained. The particle size can be tuned by variation of the composition of reactant solutions or flow rate between 2.5 and 4 nm. The small gold nanoparticles are suitable for use as seed particles for the formation of larger particles with an adjustable diameter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Cao C, Park S, Sim SJ (2008) Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase. J Colloid Interface Sci 322:152–157. doi:10.1016/j.jcis.2008.03.031

    Article  Google Scholar 

  2. Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190. doi:10.1021/ar000110a

    Article  Google Scholar 

  3. Crozier KB, Sundaramurthy A, Kino GS, Quate CF (2003) Optical antennas: resonators for local field enhancement. J Appl Phys 94:4632–4642. doi:10.1063/1.1602956

    Article  Google Scholar 

  4. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  Google Scholar 

  5. Khan SA, Duraiswamy S (2012) Controlling bubbles using bubbles-microfluidic synthesis of ultra-small gold nanocrystals with gas-evolving reducing agents. Lab Chip 12:1807–1812. doi:10.1039/c2lc21198j

    Article  Google Scholar 

  6. Knauer A, Koehler JM (2013) Screening of nanoparticle properties in microfluidic syntheses. Nanotechnol Rev 3:5–26. doi:10.1515/ntrev-2013-0018

    Google Scholar 

  7. Knauer A, Thete A, Li S, Romanus H, Csaki A, Fritzsche W, Kohler JM (2011) Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis. Chem Eng J 166:1164–1169. doi:10.1016/j.cej.2010.12.028

    Article  Google Scholar 

  8. Knauer A, Csáki A, Möller F, Hühn C, Fritzsche W, Köhler JM (2012) Microsegmented Flow-Through Synthesis of Silver Nanoprisms with Exact Tunable Optical Properties. J Phys Chem C 116:9251–9258. doi:10.1021/jp210842g

    Article  Google Scholar 

  9. Knauer A, Schneider S, Moeller F, Csaki A, Fritzsche W, Koehler JM (2013) Screening of plasmonic properties of composed metal nanoparticles by combinatorial synthesis in micro-fluid segment sequences. Chem Eng J 227:80–89. doi:10.1016/j.cej.2012.10.008

    Article  Google Scholar 

  10. Kohler JM, Marz A, Popp J, Knauer A, Kraus I, Faerber J, Serra C (2013) Polyacrylamid/silver composite particles produced via microfluidic photopolymerization for single particle-based SERS microsensorics. Anal Chem 85:313–318. doi:10.1021/ac302751t

    Article  Google Scholar 

  11. Köhler JM, Li S, Knauer A (2013) Why is micro segmented flow particularly promising for the synthesis of nanomaterials? Chem Eng Technol 36:887–899. doi:10.1002/ceat.201200695

    Article  Google Scholar 

  12. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217. doi:10.1021/jp984796o

    Article  Google Scholar 

  13. Malsch D et al (2008) μ PIV-Analysis of Taylor flow in micro channels. Chem Eng J 135:S166–S172. doi:10.1016/j.cej.2007.07.065

    Article  Google Scholar 

  14. McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128:15980–15981. doi:10.1021/ja066522h

    Article  Google Scholar 

  15. McGilvray KL, Fasciani C, Bueno-Alejo CJ, Schwartz-Narbonne R, Scaiano JC (2012) Photochemical strategies for the seed-mediated growth of gold and gold-silver nanoparticles. Langmuir 28:16148–16155. doi:10.1021/la302814v

    Article  Google Scholar 

  16. Mingotaud A-F, Reculusa S, Mingotaud C, Keller P, Sykes C, Duguet E, Ravaine S (2003) Ring-opening metathesis polymerization on well defined silica nanoparticles leading to hybrid core-shell particles. J Mater Chem 13:1920. doi:10.1039/b301653f

    Article  Google Scholar 

  17. Moreno-Manas M, Pleixats R (2003) Formation of carbon–carbon bonds under catalysis by transition-metal nanoparticles. Acc Chem Res 36:638–643. doi:10.1021/ar020267y

    Article  Google Scholar 

  18. Mukherjee P, Patra CR, Ghosh A, Kumar R, Sastry M (2002) Characterization and catalytic activity of gold nanoparticles synthesized by autoreduction of aqueous chloroaurate ions with fumed silica. Chem Mater 14:1678–1684. doi:10.1021/cm010372m

    Article  Google Scholar 

  19. Oelgemoller M, Shvydkiv O (2011) Recent advances in microflow photochemistry. Molecules 16:7522–7550. doi:10.3390/molecules16097522

    Article  Google Scholar 

  20. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thunemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301. doi:10.1021/ja906506j

    Article  Google Scholar 

  21. Scaiano JC, Billone P, Gonzalez CM, Marett L, Marin ML, McGilvray KL, Yuan N (2009) Photochemical routes to silver and gold nanoparticles. Pure Appl Chem 81:635–647. doi:10.1351/pac-con-08-09-11

    Article  Google Scholar 

  22. Schmid G, Chi LF (1998) Metal clusters and colloids. Adv Mater 10:515–526. doi:10.1002/(sici)1521-4095(199805)10:7<515:aid-adma515>3.3.co;2-p

    Article  Google Scholar 

  23. Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619. doi:10.1021/ja0354566

    Article  Google Scholar 

  24. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem-Int Ed 49:5846–5868. doi:10.1002/anie.200906653

    Article  Google Scholar 

  25. Wagner J, Kohler JM (2005) Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett 5:685–691. doi:10.1021/nl050097t

    Article  Google Scholar 

  26. Wan Z, Luan WL, Tu ST (2011) Size controlled synthesis of blue emitting core/shell nanocrystals via microreaction. J Phys Chem C 115:1569–1575. doi:10.1021/jp108901z

    Article  Google Scholar 

  27. Wegner J, Ceylan S, Kirschning A (2012) Flow chemistry—a key enabling technology for (Multistep) organic synthesis. Adv Synth Catal 354:17–57. doi:10.1002/adsc.201100584

    Article  Google Scholar 

  28. Worner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886. doi:10.1007/s10404-012-0940-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding from BMBF (project “BactoCat” Kz: 031A161A). Furthermore, we thank Andrea Knauer for the helpful discussion and Steffen Schneider for the technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lars Hafermann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hafermann, L., Michael Köhler, J. Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique. J Nanopart Res 17, 99 (2015). https://doi.org/10.1007/s11051-015-2914-8

Download citation

Keywords

  • Droplet-based microfluidics
  • Fast nanoparticle nucleation
  • Gold nanoparticles
  • Micro-continuous flow
  • Photochemistry