Skip to main content
Log in

Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core–shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC “click” reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  Google Scholar 

  • Bateman JE, Eagling RD, Worrall DR, Horrocks BR, Houlton A (1998) Alkylation of porous silicon by direct reaction with alkenes and alkynes. Angew Chem Int Ed 37:2683–2685

    Article  Google Scholar 

  • Becer CR, Hoogenboom R, Schubert US (2009) Click chemistry beyond metal-catalyzed cycloaddition. Angew Chem Int Ed 48:4900–4908. doi:10.1002/anie.200900755

    Article  Google Scholar 

  • Belomoin G et al (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843. doi:10.1063/1.1435802

    Article  Google Scholar 

  • Berne B, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  • Bhadra D, Bhadra S, Jain P, Jain NK (2002) Pegnology: a review of PEG-ylated systems. Pharmazie 57:5–29

    Google Scholar 

  • Bhattacharjee S et al (2013) Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale 5:4870–4883. doi:10.1039/c3nr34266b

    Article  Google Scholar 

  • Boyraz O, Jalali B (2005) Demonstration of directly modulated silicon Raman laser. Opt Express 13:796–800

    Article  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological Labels. Science 281:2013–2016. doi:10.1126/science.281.5385.2013

    Article  Google Scholar 

  • English DS, Pell LE, Yu ZH, Barbara PF, Korgel BA (2002) Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett 2:681–685. doi:10.1021/nl025538c

    Article  Google Scholar 

  • Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873–878. doi:10.1021/nn700319z

    Article  Google Scholar 

  • Erogbogbo F et al (2011) In Vivo targeted cancer imaging sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413–423. doi:10.1021/nn1018945

    Article  Google Scholar 

  • Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T (1997) Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 24:337–344. doi:10.1016/s0169-409x(96)00476-0

    Article  Google Scholar 

  • Hallmann S, Fink MJ, Mitchell BS (2011) Mechanochemical synthesis of functionalized silicon nanoparticles with terminal chlorine groups. J Mater Res 26:1052–1060. doi:10.1557/jmr.2011.31

    Article  Google Scholar 

  • He Y, Kang ZH, Li QS, Tsang CHA, Fan CH, Lee ST (2009) Ultrastable highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew Chem Int Ed 48:128–132. doi:10.1002/anie.200802230

    Article  Google Scholar 

  • Heintz AS, Fink MJ, Mitchell BS (2007) Mechanochemical synthesis of blue luminescent alkyl/alkenyl-passivated silicon nanoparticles. Adv Mater 19:3984–3988. doi:10.1002/adma.200602752

    Article  Google Scholar 

  • Heintz AS, Fink MJ, Mitchell BS (2010) Silicon nanoparticles with chemically tailored surfaces. Appl Organomet Chem 24:236–240. doi:10.1002/aoc.1602

    Article  Google Scholar 

  • Hovis JS, Liu H, Hamers RJ (1998) Cycloaddition chemistry of 1,3-dienes on the silicon(001) surface: competition between [4 + 2] and [2 + 2] reactions. J Phys Chem B 102:6873–6879

    Article  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  Google Scholar 

  • Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjugate Chem 22:1879–1903. doi:10.1021/bc200151q

    Article  Google Scholar 

  • Kirchner C et al (2004) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338. doi:10.1021/nl047996m

    Article  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2005–2021. doi:10.1002/1521-3773(20010601)40:11<2004:aid-anie2004>3.0.co;2-5

    Article  Google Scholar 

  • Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57:4814–4823. doi:10.1063/1.1678153

    Article  Google Scholar 

  • Kortshagen U et al (2008) Plasma synthesis of group IV quantum dots for luminescence and photovoltaic applications. Pure Appl Chem 80:1901–1908. doi:10.1351/pac200880091901

    Article  Google Scholar 

  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436. doi:10.1126/science.1083780

    Article  Google Scholar 

  • Li ZF, Ruckenstein E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467. doi:10.1021/nl0492436

    Article  Google Scholar 

  • Li Y, Hoskins JN, Sreerama SG, Grayson MA, Grayson SM (2010a) The identification of synthetic homopolymer end groups and verification of their transformations using MALDI-TOF mass spectrometry. J Mass Spectrom 45:587–611. doi:10.1002/jms.1743

    Google Scholar 

  • Li Y, Hoskins JN, Sreerama SG, Grayson SM (2010b) MALDI − TOF mass spectral characterization of polymers containing an Azide group: evidence of metastable ions. Macromolecules 43:6225–6228. doi:10.1021/ma100599n

    Article  Google Scholar 

  • Li Y et al (2011) A versatile and modular approach to functionalisation of deep-cavity cavitands via “click” chemistry. Chem Commun 47:9036–9038

    Article  Google Scholar 

  • Mayne AH, Bayliss SC, Barr P, Tobin M, Buckberry LD (2000) Biologically interfaced porous silicon devices. Phys Status Solidi A 182:505–513. doi:10.1002/1521-396x(200011)182:1<505::aid-pssa505>3.0.co;2-#

  • Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157

    Article  Google Scholar 

  • Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi:10.1126/science.1104274

    Article  Google Scholar 

  • Middel O, Verboom W, Reinhoudt DN (2002) Water-soluble cavitands—synthesis, solubilities and binding properties. Eur J Org Chem 15:2587–2597

    Article  Google Scholar 

  • Nayfeh M, Rogozhina E, Mitas L (2003) Silicon nanoparticles: next generation of ultrasensitive fluorescent markers. In: Baraton M-I (ed) Synthesis, functionalization and surface treatment of nanoparticles, vol 10. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  • Nilsson JR (2003) How cytotoxic is zinc? A study on effects of zinc on cell proliferation, endocytosis, and fine structure of the ciliate tetrahymena. Acta Protozoologica 42:19–29

    Google Scholar 

  • Özdemir C, Güner A (2007) Solubility profiles of poly(ethylene glycol)/solvent systems, I: qualitative comparison of solubility parameter approaches. Eur Polym J 43:3068–3093. doi:10.1016/j.eurpolymj.2007.02.022

    Article  Google Scholar 

  • Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mat 8:331–336. http://www.nature.com/nmat/journal/v8/n4/suppinfo/nmat2398_S1.html

  • Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA (2006) Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett 88:161102. doi:10.1063/1.2195695

    Article  Google Scholar 

  • Pinaud F et al (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27:1679–1687. doi:10.1016/j.biomaterials.2005.11.018

    Article  Google Scholar 

  • Raniero L, Zhang S, Águas H, Ferreira I, Igreja R, Fortunato E, Martins R (2005) Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz. Thin Solid Films 487:170–173. doi:10.1016/j.tsf.2005.01.059

    Article  Google Scholar 

  • Rogozhina E et al (2001) Si-N linkage in ultrabright, ultrasmall Si nanoparticles. Appl Phys Lett 78:3711–3713. doi:10.1063/1.1377619

    Article  Google Scholar 

  • Rosso-Vasic M, Spruijt E, van Lagen B, De Cola L, Zuilhof H (2008) Alkyl-functionalized oxide-free silicon nanoparticles: synthesis and optical properties. Small 4:1835–1841. doi:10.1002/smll.200800066

    Article  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen Cycloaddition Process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 114:2708–2711. doi:10.1002/1521-3757(20020715)114:14<2708:aid-ange2708>3.0.co;2-0

    Article  Google Scholar 

  • Schuppler S et al (1995) Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si. Physical Review B 52:4910–4925

    Article  Google Scholar 

  • Sudeep PK, Page Z, Emrick T (2008) PEGylated silicon nanoparticles: synthesis and characterization. Chem Commun 46:6126–6127. doi:10.1039/b813025f (Cambridge, U K)

    Article  Google Scholar 

  • Swihart MT (2007) Silicon nanoparticles for biophotonics. In: Vo-Dinh T (ed) Nanotechnology in biology and medicine: methods, devices, and applications, vol 4. CRC Press, Boca Raton

    Google Scholar 

  • Tekade RK, Kumar PV, Jain NK (2009) Dendrimers in oncology: an expanding horizon. Chem Rev 109:49–87

    Article  Google Scholar 

  • Tilley RD, Warner JH, Yamamoto K, Matsui I, Fujimori H (2005) Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem Commun 14:1833–1835

    Article  Google Scholar 

  • Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific Copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. doi:10.1021/jo011148j

    Article  Google Scholar 

  • Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417

    Article  Google Scholar 

  • Wang L, Reipa V, Blasic J (2004) Silicon nanoparticles as a luminescent label to DNA. Bioconjugate Chem 15:409–412. doi:10.1021/bc030047k

    Article  Google Scholar 

  • Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554. doi:10.1002/anie.200501256

    Article  Google Scholar 

  • Worrell BT, Malik JA, Fokin VV (2013) Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science 340:457–460. doi:10.1126/science.1229506

    Article  Google Scholar 

  • Yang L, Lua Y-Y, Lee MV, Linford MR (2005) Chemomechanical functionalization and patterning of silicon. Acc Chem Res 38:933–942

    Article  Google Scholar 

  • Yang L et al (2007) Chemistry of olefin-terminated homogeneous and mixed monolayers on scribed silicon. Chem Mater 19:1671–1678

    Article  Google Scholar 

  • Zhang Y, Chen W, Zhang J, Liu J, Chen G, Pope C (2007) In vitro and in vivo toxicity of CdTe nanoparticles. J Nanoscience Nanotech 7:497–503. doi:10.1166/jnn.2007.125

    Article  Google Scholar 

  • Zhang B, Zhang H, Myers BM, Elupula R, Jayawickramarajah J, Grayson SM (2014) Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time of flight mass spectrometry. Anal Chim Acta 816:28–40

    Article  Google Scholar 

  • Zou J, Baldwin RK, Pettigrew KA, Kauzlarich SM (2004) Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett 4:1181–1186. doi:10.1021/nl0497373

    Article  Google Scholar 

Download references

Acknowledgments

MJF and BSM are grateful for the support from the National Science Foundation (NSF grant CMMI-0726943).YL, BZ, and SMG acknowledge the financial support of Department of Defense (W81XWH-10-1-0377) and the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Fink.

Electronic supplementary material

The 1H NMR of all new compounds, as well as the FTIR and EDX spectra of silicon nanoparticle derivatives,are available in the online version of this article. Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Li, Y., Zhang, B. et al. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates. J Nanopart Res 17, 56 (2015). https://doi.org/10.1007/s11051-015-2869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2869-9

Keywords

Navigation