Skip to main content

Advertisement

Log in

Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Recently, hybrid graphene–quantum dot systems have attracted increasing attention for the next-generation optoelectronic devices such as ultrafast photo-detectors and solar energy harvesting. In this paper, a novel, one-step, reproducible, and solution-processed method is introduced to prepare hybrid graphene–PbS colloids by employing supercritical ethanol. In the hybrid nanocomposite, PbS quantum dots (~3 nm) are decorated on the reduced graphene oxide (rGO) nanosheets (~1 nm thickness and less than 1 micron lengths). By employing X-ray photoelectron and Raman and infrared spectroscopy techniques, it is shown that the rGO nanosheets are bonded to PbS nanocrystals through carboxylic bonds. Passivation of {111} planes of PbS quantum dots with rGO nanosheets is demonstrated by employing density function theory. Quenching of the photoluminescence emission of PbS nanocrystals through coupling with graphene sheets is also shown. In order to illustrate that the developed preparation method does not impair the quantum efficiency of the PbS nanocrystals, the photovoltaic efficiency of solar cell device is reported and compared with oleic acid-capped PbS colloidal quantum dot solar cells. By employing the “Hall effect” measurement, it is shown that the carrier mobility is significantly increased (by two orders of magnitudes) in the presence of graphene nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  • Aaron D, Barkhouse R, Debnath R, Kramer IJ, Zhitomirsky D, Pattantyus-Abraham AG, Levina L, Etgar L, Grätzel M, Sargent EH (2011) Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv Mater 23:3134–3138

    Article  Google Scholar 

  • Batonneau Y, Bremard C, Laureyns J, Merlin JC (2000) Microscopic and imaging Raman scattering study of PbS and its photo-oxidation products. J Raman Spectrosc 31(12):1113–1119

    Article  Google Scholar 

  • Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y (2010) A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv Mater 22:103–106

    Article  Google Scholar 

  • Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  Google Scholar 

  • Cuong TV, Pham VH, Chung JS, Shin EW, Yoo DH, Hahn SH, Huh JS, Rue GH, Kim EJ, Hur SH, Kohl PA (2010) Solution-processed ZnO-chemically converted graphene gas sensor. Mater Lett 64:2479–2482

    Article  Google Scholar 

  • Eckert CA, Knutson B, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383:313–318

    Article  Google Scholar 

  • Eda G, Lin Y-Y, Mattevi C, Yamaguchi H, Chen H-A, Chen I-S, Chen C-W, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509

    Article  Google Scholar 

  • Freitag M, Steiner M, Martin Y, Perebeinos V, Chen Z, Tsang JC, Avouris P (2009) Energy dissipation in grapheme field-effect transistors. Nano Lett 9:1883–1888

    Article  Google Scholar 

  • Ge JP, Wang J, Zhang HX, Wang X, Peng Q, Li YD (2005) Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior. Chem A Eur J 11(6):1889–1894

    Article  Google Scholar 

  • Graetzel M, Janssen RAJ, Mitzi DB, Sargent EH (2012) Materials interface engineering for solution-processed photovoltaics. Nature 488:304–312

    Article  Google Scholar 

  • Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014–3017

    Article  Google Scholar 

  • Huang YQ, Zhu RJ, Kang N, Du J, Xu HQ (2013) Photoelectrical response of hybrid graphene-PbS quantum dot devices. Appl Phys Lett 103:143119-1–143119-5

  • Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Wei Chou K, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582

    Article  Google Scholar 

  • Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Arquer FG, Gatti F, Koppens FHK (2012) Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 7:363–368

    Article  Google Scholar 

  • Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L (2009) One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20:455–602

    Google Scholar 

  • Li L, Coates N, Moses D (2010) Solution-processed high efficiency inorganic solar cell based on CuInS2 nanocrystals. J Am Chem Soc 132:22–23

    Article  Google Scholar 

  • Liu J, Anand M, Roberts CB (2006) Synthesis and extraction of β-d-glucose-stabilized au nanoparticles processed into low-defect, wide-area thin films and ordered arrays using CO2-expanded liquid. Langmuir 22:3964–3969

    Article  Google Scholar 

  • Marre S, Park J, Rempel J, Guan J, Bawendi MG, Jensen KF (2008) Supercritical continuous-microflow synthesis of narrow size distribution quantum dots. Adv Mater 20:4830–4834

    Article  Google Scholar 

  • McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142

    Article  Google Scholar 

  • Moreels I, Lambert K, Smeets D, Muynck DD, Nollet T, Martins JC, Vanhaecke F, Vantomme A, Delerue C, Allan G, Hens Z (2009) Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3:3023–3030

    Article  Google Scholar 

  • Pahari SK, Adschiri T, Panda AB (2011) Synthesis of monodispersed nanocrystalline materials in supercritical ethanol: a generalized approach. J Mater Chem 21:10377–10383

    Article  Google Scholar 

  • Parand P, Samadpour M, Esfandiar A, Iraji Zad A (2014) Graphene/PbS as a novel counter electrode for quantum dot sensitized solar cells. ACS Photonics 1:323–330

    Article  Google Scholar 

  • Sargent EH (2005) Infrared quantum dots. Adv Mater 17:515–522

    Article  Google Scholar 

  • Sargent EH (2009) Infrared photovoltaics made by solution processing. Nat Photon 3:325–331

    Article  Google Scholar 

  • Shik A, Yu S, Johnson E, Ruda H, Sargent EH (2002) Carrier transport and luminescence in composite organic-inorganic light-emitting devices. Solid State Electron 46:61–68

    Article  Google Scholar 

  • Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials:past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  • Son DI, Kwon BW (2012) Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7:465–471

    Article  Google Scholar 

  • Tang J, Brzozowski L, Aaron D, Barkhouse R, Wang X, Debnath R, Wolowiec R, Palmiano E, Levina L, Pattantyus-Abraham AG, Jamakosmanovic D, Sargent EH (2010) Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stablity. ACS Nano 4(2):869–878

    Article  Google Scholar 

  • Wang N, Cao X, Guo L, Yang S, Wu Z (2008) Facile synthesis of PbS truncated octahedron crystals with high symmetry and their large-scale assembly into regular patterns by a simple solution route. ACS Nano 2(2):184–190

    Article  Google Scholar 

  • Wang P, Jiang T, Zhu C, Zhai Y, Wang D, Dong S (2010) One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res 3(11):794–799

    Article  Google Scholar 

  • Wang JS, Brown GJ, Hung W-C, Wai CM (2012) Supercritical fluid deposition of uniform PbS nanoparticle films for energy-transfer studies. Chem Phys Chem 13:2068–2073

    Google Scholar 

  • Williams G, Kamat PV (2009) Graphene–semiconductor nanocomposites. Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25:13869–13873

    Article  Google Scholar 

  • Xiong S, Xi B, Xu D, Wang C, Feng X, Zhou H, Qian Y (2007) l-Cysteine-assisted tunable synthesis of PbS of various morphologies. J Phys Chem C 111(45):16761–16767

    Article  Google Scholar 

  • Yong V, Tour JM (2010) Theoretical efficiency of graphene-based photovoltaics. Small 6:313–318

    Article  Google Scholar 

  • Zhang YH, Guo L, Yin PG, Zhang R, Zhang Q, Yang SH (2007) A highly regular hexapod structure of lead sulfide: solution synthesis and Raman spectroscopy. Chem A Eur J 13(10):2903–2907

    Article  Google Scholar 

  • Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials. ACS Nano 4:7303–7314

    Article  Google Scholar 

  • Zhang M, Lei D, Du Z, Yin X, Chen L, Li Q, Wang Y, Wang TJ (2011) Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J Mater Chem 21:1673–1676

    Article  Google Scholar 

  • Zhang D, Gan L, Cao Y, Wang Q, Qi L, Guo X (2012) Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv Mater 24:2715–2720

    Article  Google Scholar 

  • Zhitomirsky D, Voznyy Q, Hoogland S, Sargent EH (2013) Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano 7:5282–5290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Simchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, M.M., Tayyebi, A., Simchi, A. et al. Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol. J Nanopart Res 17, 9 (2015). https://doi.org/10.1007/s11051-014-2854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2854-8

Keywords

Navigation