Bright, water-soluble CeF3 photo-, cathodo-, and X-ray luminescent nanoparticles

  • Sandhya Clement
  • Wei Deng
  • Krystyna Drozdowicz-Tomsia
  • Deming Liu
  • Cameron Zachreson
  • Ewa M. GoldysEmail author
Research Paper


Bright, water-soluble CeF3 nanoparticles with small size and narrow size distribution have been synthesized using a simple co-precipitation method without any ligands. Size control of nanoparticles from 13 ± 2 to 9 ± 2 nm was achieved by varying the reaction time. Colloidal properties have been found to vary with pH and, independently, with dilution. The photoluminescence of the as-synthesized nanoparticles shows a highly photostable UV/Visible fluorescence band due to allowed 5d–4f transitions, also observed in the X-ray luminescence spectrum. This band is suitable for X-ray excitation of a range of photosensitizers. The photoluminescence quantum yield of nanoparticles was also determined to be 31 %. Using the measured fluorescence decay time of 25 ns, the radiative lifetime of Ce in CeF3 was found to be 80.6 ns. Both photoluminescence and cathodoluminescence emission are affected by the reaction time and measurement temperature. Electron-beam-induced defect annealing is also observed.


Water soluble Photostable Quantum yield X-ray luminescence Cathodoluminescence 



The authors thank Prof. Damian Gore and Mr. Russell Field, Macquarie University for their assistance with X-ray luminescence measurements. All fluorescence measurements were performed in Optical Characterization Facility, Linked Laboratory to AMMRF (Australian Microscopy and Microanalysis Research Facility). S.C. acknowledges the support of the MQRES scholarship from Macquarie University. This work is partially supported by Australian Research Council (ARC) through its Centre of Excellence scheme (CE140100003) to E.M. G.


  1. Anderson D (1989) Properties of the high-density scintillator cerium fluoride. Nucl Sci IEEE Trans 36:137–140CrossRefGoogle Scholar
  2. Anderson D (1990) Cerium fluoride: a scintillator for high-rate applications. Nucl Instrum Methods Phys Res Sect A 287:606–612CrossRefGoogle Scholar
  3. Bender CM, Burlitch JM, Barber D, Pollock C (2000) Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles. Chem Mater 12:1969–1976CrossRefGoogle Scholar
  4. Chao-Shu S et al (2000) Cascade energy transfer in CeF3 crystals. Chin Phys Lett 17:532CrossRefGoogle Scholar
  5. Chen W, Zhang J (2006) Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol 6:1159–1166CrossRefGoogle Scholar
  6. Chen D, Yu Y, Lin H, Huang P, Weng F, Shan Z, Wang Y (2009) CeF3-based glass ceramic: a potential luminescent host for white-light-emitting diode. Opt Lett 34:2882–2884CrossRefGoogle Scholar
  7. Del Sesto R et al (2007) Development of nanocomposite scintillators. LALP-07-030 SpringGoogle Scholar
  8. Derenzo SE, Moses W, Cahoon J, Perera R, Litton J (1990) Prospects for new inorganic scintillators. Nucl Sci IEEE Trans 37:203–208CrossRefGoogle Scholar
  9. Diamente PR (2005) Development of water-soluble LaF3 nanoparticles as potential biolabels. University of Victoria, VictoriaGoogle Scholar
  10. Dorenbos P (2005) Scintillation mechanisms in Ce3+ doped halide scintillators. Phys Status Solidi (a) 202:195–200CrossRefGoogle Scholar
  11. Dorenbos P (2010) Fundamental limitations in the performance of rm Ce3+-, rm Pr3+-, and rm Eu2+ -activated scintillators. IEEE Trans Nucl Sci 57:1162–1167CrossRefGoogle Scholar
  12. Gai S, Yang P, Li X, Li C, Wang D, Dai Y, Lin J (2011) Monodisperse CeF3, CeF3: Tb3+, and CeF3: Tb3+@ LaF3 core/shell nanocrystals: synthesis and luminescent properties. J Mater Chem 21:14610–14615CrossRefGoogle Scholar
  13. Ge J, Hu Y, Biasini M, Dong C, Guo J, Beyermann WP, Yin Y (2007) One-step synthesis of highly water-soluble magnetite colloidal nanocrystals chemistry-A. Eur J 13:7153–7161CrossRefGoogle Scholar
  14. Goldys EM (2009) Fluorescence applications in biotechnology and life sciences. Wiley, HobokenGoogle Scholar
  15. Himel CM, Mayer RT (1970) 5-Dimethylaminonaphthalene-1-sulfonic acid (DANS acid) as standard for quantum yield of fluorescence. Anal Chem 42:130–132CrossRefGoogle Scholar
  16. Jacobsohn LG et al (2011) Fluoride nanoscintillators. J Nanomater 2011:42Google Scholar
  17. Kobayashi M et al (1991) Cerium fluoride, a highly radiation-resistive scintillator. Nucl Instrum Methods Phys Res Sect A 302:443–446CrossRefGoogle Scholar
  18. Liu Y, Chen W, Wang S, Joly AG (2008a) Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett 92:043901–043903CrossRefGoogle Scholar
  19. Liu Y, Chen W, Wang S, Joly AG, Westcott S, Woo BK (2008b) X-ray luminescence of LaF: Tb and LaF: Ce Tb water-soluble nanoparticles. J Appl Phys 103:063105CrossRefGoogle Scholar
  20. Lo Nigro R, Malandrino G, Fragala IL, Bettinelli M, Speghini A (2002) MOCVD of CeF3 films on Si (100) substrates: synthesis, characterization and luminescence spectroscopy. J Mater Chem 12:2816–2819CrossRefGoogle Scholar
  21. Mishra S et al (2013) A molecular precursor approach to monodisperse scintillating CeF 3 nanocrystals. Dalton Trans 42:12633–12643CrossRefGoogle Scholar
  22. Morgan NY, Kramer-Marek G, Smith PD, Camphausen K, Capala J (2009) Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters. Radiat Res 171:236–244CrossRefGoogle Scholar
  23. Moses W, Derenzo S (1989) Cerium fluoride, a new fast, heavy scintillator. Nucl Sci IEEE Trans 36:173–176CrossRefGoogle Scholar
  24. Moses W, Derenzo S, Weber M, Ray-Chaudhuri A, Cerrina F (1994) Scintillation mechanisms in cerium fluoride. J Lumin 59:89–100CrossRefGoogle Scholar
  25. Nikl M (2006) Scintillation detectors for X-rays. Meas Sci Technol 17:R37CrossRefGoogle Scholar
  26. Osiński M, Plumley JB, Withers NJ, Rivera AC, Akins BA, Sankar K, Smolyakov GA (2009) Lanthanide-halide-based nanoscintillators for portable radiological detectors, Invited Paper. In: Proc. of SPIE vol 7306, p 730617Google Scholar
  27. Rodnyi P (2001) Progress in fast scintillators. Radiat Meas 33:605–614CrossRefGoogle Scholar
  28. Sankar K, Plumley JB, Akins BA, Memon TA, Withers NJ, Smolyakov GA, Osinski M (2009) Synthesis and characterization of scintillating cerium-doped lanthanum fluoride nanocrystals. SPIE BiOS: Biomedical Optics. International Society for Optics and Photonics, San Jose, pp 718909–718912Google Scholar
  29. Santra S et al (2006) Fluorescence lifetime measurements to determine the core–shell nanostructure of FITC-doped silica nanoparticles: an optical approach to evaluate nanoparticle photostability. J Lumin 117:75–82CrossRefGoogle Scholar
  30. Shi C et al (2002) The dynamics properties on luminescence of CeF3 crystals. Surf Rev Lett 9:371–374CrossRefGoogle Scholar
  31. Snigireva O, Solomonov V (2005) Role of the Ce2+ ions in cerium fluoride luminescence. Phys Solid State 47:1443–1445CrossRefGoogle Scholar
  32. Sun Z, Li Y, Zhang X, Yao M, Ma L, Chen W (2009) Luminescence and energy transfer in water soluble CeF3 and CeF3: Tb3+ nanoparticles. J Nanosci Nanotechnol 9:6283–6291CrossRefGoogle Scholar
  33. Wang F, Zhang Y, Fan X, Wang M (2006a) Facile synthesis of water-soluble LaF3: Ln3+ nanocrystals. J Mater Chem 16:1031–1034CrossRefGoogle Scholar
  34. Wang F, Zhang Y, Fan X, Wang M (2006b) One-pot synthesis of chitosan/LaF3: Eu3+ nanocrystals for bio-applications. Nanotechnology 17:1527CrossRefGoogle Scholar
  35. Wang Z-L et al (2006c) A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3: Tb3+, and CeF3: Tb3+/LaF3 (core/shell) nanoparticles. Chem Mater 18:2030–2037CrossRefGoogle Scholar
  36. Wang J, Bo S, Song L, Hu J, Liu X, Zhen Z (2007) One-step synthesis of highly water-soluble LaF3: Ln3+ nanocrystals in methanol without using any ligands. Nanotechnology 18:465606CrossRefGoogle Scholar
  37. Weber G, Teale F (1957) Determination of the absolute quantum yield of fluorescent solutions. Trans Faraday Soc 53:646–655CrossRefGoogle Scholar
  38. Wiliyam Mashirev DVS, Dmitry (2012) Baranov production and study of cerium trifluoride single crystals for ionizing radiation detectors. In: The Sixth Jordan International chemical Engineering conference, JordanGoogle Scholar
  39. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067–1071CrossRefGoogle Scholar
  40. Wojtowicz A, Berman E, Koepke C, Lempicki A (1992) Stoichiometric cerium compounds as scintillators. I. CeF3. Nucl Sci IEEE Trans 39:494–501CrossRefGoogle Scholar
  41. Wojtowicz A, Balcerzyk M, Berman E, Lempicki A (1994) Optical spectroscopy and scintillation mechanisms of Cex La1−x F{3}. Phys Rev B 49:14880CrossRefGoogle Scholar
  42. Wu Q, Chen Y, Xiao P, Zhang F, Wang X, Hu Z (2008) Hydrothermal synthesis of cerium fluoride hollow nanostructures in a controlled growth microenvironment. J Phys Chem C 112:9604–9609CrossRefGoogle Scholar
  43. Zhu L, Li Q, Liu X, Li J, Zhang Y, Meng J, Cao X (2007) Morphological control and luminescent properties of CeF3 nanocrystals. J Phys Chem C 111:5898–5903CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sandhya Clement
    • 1
  • Wei Deng
    • 1
  • Krystyna Drozdowicz-Tomsia
    • 1
  • Deming Liu
    • 1
  • Cameron Zachreson
    • 2
  • Ewa M. Goldys
    • 1
    Email author
  1. 1.Centre for Nanoscale BioPhotonics, Department of Physics and AstronomyMacquarie UniversitySydneyAustralia
  2. 2.School of Physics and Advanced MaterialsUniversity of Technology SydneyUltimoAustralia

Personalised recommendations