Advertisement

Evolution of the surface plasmon resonance of Au:TiO2 nanocomposite thin films with annealing temperature

  • J. BorgesEmail author
  • M. Buljan
  • J. Sancho-Parramon
  • I. Bogdanovic-Radovic
  • Z. Siketic
  • T. Scherer
  • C. Kübel
  • S. Bernstorff
  • A. Cavaleiro
  • F. Vaz
  • A. G. Rolo
Research Paper

Abstract

This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO2 dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 °C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 °C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 °C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.

Keywords

Thin films Au nanoparticles TiO2 matrix Nanocomposites Localized surface plasmon resonance Dielectric function 

Notes

Acknowledgments

This study is sponsored by the FEDER funds through the program: COMPETE—Programa Operacional Factores de Competitividade—and by the national funds through the FCT—Fundação para a Ciência e a Tecnologia-, under the projects: PEst-C/FIS/UI607/2013, PEst-C/CTM/LA0025/2013 and PEst-C/EME/UI0285/2013. The authors would like also to thank the support by (i) Karlsruhe Nano Micro Facility (KNMF), a Helmholtz Research Infrastructure at KIT; (ii) ELETTRA Synchrotron Radiation Center for the measurements at the SAXS beamline; (iii) European COST Actions MP0901-NanoTP; and (iv) The European Community as an Integrating Activity ‘Support of Public and Industrial Research Using Ion Beam Technology (SPIRIT project)’ under EC contract no. 227012. M. B. acknowledges support from the Croatian Ministry of Science, Higher Education and Sport, (project number 098-0982886-2895). The authors would like to thank Minh Ngoc Tran, Marc Torrell Faro and Ana Vera Machado for the samples’ preparations; M. R. Correia (Department of Physics) and I3N group from Aveiro University for allowing the use of Raman spectrometer; Professor David J. Barber (University of Essex) and Engineer José António Santos (UM) for their helpful discussions and critical reading of this manuscript.

References

  1. Adochite RC et al (2011) Structural and optical properties of Ag:TiO2 nanocomposite films prepared by magnetron sputtering optoelectronics and advanced materials. Rapid Commun 5:73–79Google Scholar
  2. Alves E et al (2012) Structural and optical studies of Au doped titanium oxide films. Nucl Instrum Methods Phys Res B: Beam Interact Mater Atoms 272:61–65. doi:  10.1016/j.nimb.2011.01.033
  3. Arstila K et al (2014) Potku—new analysis software for heavy ion elastic recoil detection analysis. Nucl Instrum Methods Phys Res B: Beam Interact Mater Atoms 331:34–41. doi:  10.1016/j.nimb.2014.02.016
  4. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52. doi: 10.1038/nbt927 CrossRefGoogle Scholar
  5. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. doi: 10.1038/nmat2629 CrossRefGoogle Scholar
  6. Barber DJ, Freestone IC (1990) An investigation of the origin of the colour of the lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33–45. doi: 10.1111/j.1475-4754.1990.tb01079.x CrossRefGoogle Scholar
  7. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800. doi: 10.1364/oe.16.021793 CrossRefGoogle Scholar
  8. Cho SH, Lee S, Ku DY, Lee TS, Cheong B, Kim WM, Lee KS (2004) Growth behavior and optical properties of metal-nanoparticle dispersed dielectric thin films formed by alternating sputtering. Thin Solid Films 447:68–73. doi: 10.1016/j.tsf.2003.09.024 CrossRefGoogle Scholar
  9. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi: 10.1021/cr030698+ CrossRefGoogle Scholar
  10. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89. doi:  10.1063/1.2336629
  11. Etchegoin PG, le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125. doi:  10.1063/1.2360270
  12. Figueiredo NM, Kubart T, Sanchez-García JA, Escobar Galindo R, Climent-Font A, Cavaleiro A (2014) Optical properties and refractive index sensitivity of reactive sputtered oxide coatings with embedded Au clusters. J Appl Phys 115:063512. doi:  10.1063/1.4861136
  13. Gracin D, Siketić Z, Juraić K, Čeh M (2013) Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy. Appl Surf Sci 275:1922. doi:  10.1016/j.apsusc.2013.01.162
  14. Hasan MM, Haseeb ASMA, Saidur R, Masjuki HH, Hamdi M (2010) Influence of substrate and annealing temperatures on optical properties of RF-sputtered TiO2 thin films. Optic Mater 32:690–695. doi:  10.1016/j.optmat.2009.07.011
  15. Haynes CL, van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611. doi: 10.1021/jp010657m CrossRefGoogle Scholar
  16. Hoa XD, Kirk AG, Tabrizian M (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron 23:151–160. doi:  10.1016/j.bios.2007.07.001
  17. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, van Duyne RP (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863. doi: 10.1021/jp9904771 CrossRefGoogle Scholar
  18. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. doi: 10.1002/adma.200400271 CrossRefGoogle Scholar
  19. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648. doi: 10.1021/la971228b CrossRefGoogle Scholar
  20. Kelly KL, Coronado E, Zhao LL, Schatz GC (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. doi: 10.1021/jp026731y CrossRefGoogle Scholar
  21. Kiran CVS, Christian K, Tomislav H, Vladimir Z, Thomas S, Franz F, Lorenz K (2012) Surface segregation in TiO2-based nanocomposite thin films. Nanotechnology 23:495701CrossRefGoogle Scholar
  22. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuat 4:299–304. doi:  10.1016/0250-6874(83)85036-7
  23. Lončarić M, Sancho-Parramon J, Zorc H (2011) Optical properties of gold island films—a spectroscopic ellipsometry study. Thin Solid Films 519:2946–2950. doi:  10.1016/j.tsf.2010.12.068
  24. Macedo F et al (2012) TiO2 coatings with Au nanoparticles analysed by photothermal IR radiometry. J Phys D Appl Phys 45:105301CrossRefGoogle Scholar
  25. Martin N, Rousselot C, Rondot D, Palmino F, Mercier R (1997) Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 300:113–121. doi:  10.1016/S0040-6090(96)09510-7
  26. Mishra YK, Mohapatra S, Kabiraj D, Tripathi A, Pivin JC, Avasthi DK (2007) Growth of Au nanostructures by annealing electron beam evaporated thin films. J Opt A: Pure Appl Opt 9:S410CrossRefGoogle Scholar
  27. Pedrueza E, Sancho-Parramon J, Bosch S, Valdés JL, Martinez-Pastor JP (2013) Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties. Nanotechnology 24:065202CrossRefGoogle Scholar
  28. Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110:1–13. doi:  10.1103/PhysRev.110.1
  29. Pereira RMS, Pereira P, Smirnov G, Vasilevskiy MI (2013) Probing spatial correlations in a system of polarizable nanoparticles via measuring its optical extinction spectrum. EPL (Europhys Lett) 102:67001. doi: 10.1209/0295-5075/102/67001 CrossRefGoogle Scholar
  30. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101. doi:  10.1063/1.2734885
  31. Preclikova J, Trojanek F, Nemec P, Maly P (2008) Multicolour photochromic behaviour of silver nanoparticles in titanium dioxide matrix. Physica status solidi C: Curr Top Solid State Phys 5(11): 3496–3498. doi:  10.1002/pssc.200779408
  32. Sancho-Parramon J, Janicki V, Zorc H (2010) On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications. Opt Express 18:26915–26928. doi: 10.1364/oe.18.026915 CrossRefGoogle Scholar
  33. Sancho-Parramon J, Janicki V, Zorc H (2011) Tuning the effective dielectric function of thin film metal-dielectric composites by controlling the deposition temperature. NANOP 5:051805–051808. doi:  10.1117/1.3590238
  34. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86. doi:  10.1063/1.1855423
  35. Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–427. http://www.nature.com/nature/journal/v483/n7390/abs/nature10904.html#supplementary-information
  36. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204. doi: 10.1038/nmat2630 CrossRefGoogle Scholar
  37. Siketić Z, Radović IB, Jakšić M (2008) Development of a time-of-flight spectrometer at the Ruder Bošković Institute in Zagreb. Nucl Instrum Methods Phys Res B: Beam Interact Mater Atoms 266:1328–1332. doi:  10.1016/j.nimb.2007.12.070
  38. Siketić Z, Radović IB, Jakšić M (2010) Quantitative analysis of hydrogen in thin films using time-of-flight elastic recoil detection analysis. Thin Solid Films 518:2617–2622. doi:  10.1016/j.tsf.2009.07.196
  39. Siozios A et al (2012) Optical encoding by plasmon-based patterning: hard and inorganic materials become photosensitive. Nano Lett 12:259–263. doi: 10.1021/nl2034738 CrossRefGoogle Scholar
  40. Stockman MI (2011) Nanoplasmonics: the physics behind the applications. Phys Today 64:39–44. doi: 10.1063/1.3554315 CrossRefGoogle Scholar
  41. Su W, Zhang J, Feng Z, Chen T, Ying P, Li C (2008) Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J Phys Chem C 112:7710–7716. doi: 10.1021/jp7118422 CrossRefGoogle Scholar
  42. Torrell M, Cunha L, Cavaleiro A, Alves E, Barradas NP, Vaz F (2010a) Functional and optical properties of Au:TiO2 nanocomposite films: the influence of thermal annealing. Appl Surf Sci 256:6536–6542. doi:  10.1016/j.apsusc.2010.04.043
  43. Torrell M, Cunha L, Kabir MR, Cavaleiro A, Vasilevskiy MI, Vaz F (2010b) Nanoscale color control of TiO2 films with embedded Au nanoparticles. Mater Lett 64:2624–2626. doi:  10.1016/j.matlet.2010.08.031
  44. Torrell M, Machado P, Cunha L, Figueiredo NM, Oliveira JC, Louro C, Vaz F (2010c) Development of new decorative coatings based on gold nanoparticles dispersed in an amorphous TiO2 dielectric matrix. Surf Coat Technol 204:1569–1575. doi:  10.1016/j.surfcoat.2009.10.003
  45. Torrell M et al (2011) Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing. J Appl Phys 109. doi:  10.1063/1.3565066
  46. Toudert J, Simonot L, Camelio S, Babonneau D (2012) Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances. Phys Rev B 86:045415. doi:  10.1103/PhysRevB.86.045415
  47. Walters G, Parkin IP (2009) The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. J Mater Chem 19:574–590. doi: 10.1039/b809646e CrossRefGoogle Scholar
  48. Walton RM, Dwyer DJ, Schwank JW, Gland JL (1998) Gas sensing based on surface oxidation/reduction of platinum-titania thin films I. Sensing film activation and characterization. Appl Surf Sci 125:187–198. doi:  10.1016/S0169-4332(97)00395-4
  49. Wang J, Lau WM, Li Q (2005) Effects of particle size and spacing on the optical properties of gold nanocrystals in alumina. J Appl Phys 97. doi:  10.1063/1.1868052
  50. Wu J-J, Tseng C-H (2006) Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B: Environ 66:51–57. doi:  10.1016/j.apcatb.2006.02.013
  51. Zhang J, Li M, Feng Z, Chen J, Li C (2005) UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935. doi: 10.1021/jp0552473 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. Borges
    • 1
    • 2
    • 3
    Email author
  • M. Buljan
    • 4
  • J. Sancho-Parramon
    • 4
    • 5
  • I. Bogdanovic-Radovic
    • 4
  • Z. Siketic
    • 4
  • T. Scherer
    • 6
  • C. Kübel
    • 6
  • S. Bernstorff
    • 7
  • A. Cavaleiro
    • 2
  • F. Vaz
    • 1
    • 2
  • A. G. Rolo
    • 1
  1. 1.Centro/Departamento de FísicaUniversidade do MinhoBragaPortugal
  2. 2.SEG-CEMUC, Mechanical Engineering DepartmentUniversity of CoimbraCoimbraPortugal
  3. 3.Instituto Pedro Nunes, Laboratório de EnsaiosDesgaste e MateriaisCoimbraPortugal
  4. 4.Rudjer Boskovic InstituteZagrebCroatia
  5. 5.Departament de Física Aplicada i ÒpticaUniversitat de BarcelonaBarcelonaSpain
  6. 6.Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF)Eggenstein-LeopoldshafenGermany
  7. 7.Elettra-Sincrotrone TriesteBasovizzaItaly

Personalised recommendations