Skip to main content

Silicon crystallization in nanodot arrays organized by block copolymer lithography

Abstract

Asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin (h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter (d < 20 nm), density (1.2 × 1011 cm−2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals (d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andreozzi A, Lamagna L, Seguini G, Fanciulli M, Schamm-Chardon S, Castro C, Perego M (2011a) The fabrication of tunable nanoporous oxide surfaces by block copolymer lithography and atomic layer deposition. Nanotechnology 22:335303

    Article  Google Scholar 

  2. Andreozzi A, Poliani E, Seguini G, Perego M (2011b) The effect of random copolymer on the characteristic dimensions of cylinder-forming PS-b-PMMA thin films. Nanotechnology 22:185304

    Article  Google Scholar 

  3. Bates FS, Fredrickson GH (1999) Block copolymers-designer soft materials. Phys Today 52(2):32–38

    Article  Google Scholar 

  4. Castro C, Schamm-Chardon S, Pecassou B, Andreozzi A, Seguini G, Perego M, BenAssayag G (2013) In-plane organization of silicon nanocrystals embedded in SiO2 thin films. Nanotechnology 24:075302

    Article  Google Scholar 

  5. Cheng JY, Ross CA, Smith HI, Thomas EL (2006) Templated self-assembly of block copolymers: top-down helps bottom-up. Adv Mater 18:2505–2521

    Article  Google Scholar 

  6. Farrell RA, Petkov N, Morris MA, Holmes JD (2010) Self-assembled templates for the generation of arrays of 1-dimensional nanostructures: from molecules to devices. J Coll Int Sci 349:449–472

    Article  Google Scholar 

  7. Gay G, Baron T, Agraffeil C, Salhi B, Chevolleau T, Cunge G, Grampeix H, Tortai J-H, Martin F, Jalaguier E, De Salvo B (2010) CMOS compatible strategy based on selective atomic layer deposition of a hard mask for transferring block copolymer lithography patterns. Nanotechnology 21:435301

    Article  Google Scholar 

  8. Grom GF, Lockwood DJ, McCaffrey JP, Labbé HJ, Fauchet PM, White B Jr, Diener J, Kovalev D, Koch F, Tsybeskov L (2000) Ordering and self-organization in nanocrystalline silicon. Nature 407:358–361

    Article  Google Scholar 

  9. Guarini KW, Black CT, Zhang Y, Babich IV, Sikorski EM, Gignac LM (2003) Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly. In: Electron devices meeting, 2003. IEDM ‘03 technical digest. IEEE international, pp 22.2.1–22.2.4

  10. Hazelton AJ, Wakamoto S, Hirukawa S, McCallum M, Magome N, Ishikawa J, Lapeyre C, Guilmeau I, Barnola S, Gaugiran S (2009) Double-patterning requirements for optical lithography and prospects for optical extension without double patterning. J Micro/Nanolith MEMS MOEMS 8:011003

    Article  Google Scholar 

  11. Hong AJ, Liu C-C, Wang Y, Kim J, Xiu F, Ji S, Zou J, Nealey PF, Wang KL (2010) Metal nanodot memory by self-assembled block copolymer lift-off. Nano Lett 10:224–229

    Article  Google Scholar 

  12. Hu H, Gopinadhan M, Osuji CO (2014) Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 10:3867–3889

    Article  Google Scholar 

  13. Jeong S-J, Xia G, Kim BH, Shin DO, Kwon S-H, Kang S-W, Kim SO (2008) Universal Block Copolymer Lithography for Metals, Semiconductors, Ceramics, and Polymers. Adv Mater 20:1898–1904

    Article  Google Scholar 

  14. Jeong S-J, Kim JY, Kim BH, Moon H-S, Kim SO (2013) Directed self-assembly of block copolymers for next generation nanolithography. Mater Today 16:468–476

    Article  Google Scholar 

  15. Kang GB, Kim YT, Park JH, Kim S-I, Sohn Y-S (2009) Fabrication of silicon nanodots on insulator using block copolymer thin film. Curr Appl Phys 9:e197–e200

    Article  Google Scholar 

  16. Koo K, Ahn H, Kim S-W, Ryu DY, Russell TP (2013) Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large. Soft Matter 9:9059–9071

    Article  Google Scholar 

  17. Li W, Yang S (2007) Creation of sub-20-nm contact using diblock copolymer on a 300 mm wafer for complementary metal oxide semiconductor applications. J Vac Sci Technol, B 25:1982–1984

    Article  Google Scholar 

  18. Lupi FF, Giammaria TJ, Ceresoli M, Seguini G, Sparnacci K, Antonioli D, Gianotti V, Laus M, Perego M (2013) Rapid thermal processing of self-assembling block copolymer thin films. Nanotechnology 24:315601

    Article  Google Scholar 

  19. Lupi FF, Giammaria TJ, Seguini G, Laus M, Enrico E, De Leo N, Boarino L, Ober CK, Perego M (2014a) Thermally induced orientational flipping of cylindrical phase diblock copolymers. J Mater Chem C 2:2175–2182

    Article  Google Scholar 

  20. Lupi FF, Giammaria TJ, Seguini G, Vita F, Francescangeli O, Sparnacci K, Antonioli D, Gianotti V, Laus M, Perego M (2014b) Fine tuning of lithographic masks through thin films of PS-b-PMMA with different molar mass by rapid thermal processing. Appl Mater Interfaces 6:7180–7188

    Article  Google Scholar 

  21. Park S, Kim B, Wang JY, Russell TP (2008) Fabrication of highly ordered silicon oxide dots and stripes from block copolymer thin films. Adv Mater 20:681–685

    Article  Google Scholar 

  22. Perego M, Andreozzi A, Vellei A, Lupi FF, Seguini G (2013) Collective behavior of block copolymer thin films within periodic topographical structures. Nanotechnology 24:245301

    Article  Google Scholar 

  23. Ross CA, Berggren KK, Cheng JY, Jung YS, Chang J-B (2014) Three-dimensional nanofabrication by block copolymer self-assembly. Adv Mater 26:4386–4396

    Article  Google Scholar 

  24. Ruiz R, Sandstrom RL, Black CT (2007a) Induced orientational order in symmetric diblock copolymer thin films. Adv Mater 19:587–591

    Article  Google Scholar 

  25. Ruiz R, Ruiz N, Zhang Y, Sandstrom RL, Black CT (2007b) Local defectivity control of 2D self-assembled block copolymer patterns. Adv Mater 19:2157–2162

    Article  Google Scholar 

  26. Schamm S, Bonafos C, Coffin H, Cherkashin N, Carrada M, Assayag GB, Claverie A, Tencé M, Colliex C (2008) Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS. Ultramicroscopy 108:346–357

    Article  Google Scholar 

  27. Segalman RA, Yokoyama H, Kramer EJ (2001) Graphoepitaxy of spherical domain block copolymer films. Adv Mater 13:1152–1155

    Article  Google Scholar 

  28. Seguini G, Giammaria TJ, Lupi FF, Sparnacci K, Antonioli D, Gianotti V, Vita F, Placentino IF, Hilhorst J, Ferrero C, Francescangeli O, Laus M, Perego M (2014) Thermally induced self-assembly of cylindrical nanodomains in low molecular weight PS-b-PMMA thin films. Nanotechnology 25:045301

    Article  Google Scholar 

  29. The International Technology Roadmap for Semiconductors (ITRS) (2011) Emerging research materials. http://www.itrs.net/

  30. Tsai H, Pitera JW, Miyazoe H, Bangsaruntip S, Engelmann SU, Liu C-C, Cheng JY, Bucchignano JJ, Klaus DP, Joseph EA, Sanders DP, Colburn ME, Guillorn MA (2014) Two-dimensional pattern formation using graphoepitaxy of PS-b-PMMA block copolymers for advanced FinFET device and circuit fabrication. ACS Nano 8:5227–5232

    Article  Google Scholar 

  31. Tsybeskov L, Hirschman KD, Duttagupta SP, Zacharias M, Fauchet PM, McCaffrey JP, Lockwood DJ (1999) Phonon-assisted tunneling and interface quality in nanocrystalline Si/amorphous SiO2 superlattices. Appl Phys Lett 75:2265

    Article  Google Scholar 

  32. Tsybeskov L, Kamenev BV, Sirenko AA, McCaffrey JP, Lockwood DJ (2010) Strain-induced lateral self-organization in Si/SiO2 nanostructures. Appl Phys Lett 96:013105

    Article  Google Scholar 

  33. Xiao S, Yang XM, Edwards EW, La YH, Nealey PF (2005) Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays. Nanotechnology 16:S324

    Article  Google Scholar 

  34. Xu J, Hong SW, Gu W, Lee KY, Kuo DS, Xiao S, Russell TP (2011) Fabrication of silicon oxide nanodots with an areal density beyond 1 teradots inch−2. Adv Mater 23:5755–5761

    Article  Google Scholar 

  35. Zacharias M, Streitenberger P (2000) Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces. Phys Rev B 62:8391–8396

    Article  Google Scholar 

  36. Zacharias M, Blasing J, Veit P, Tsybeskov L, Hirschman K, Fauchet PM (1999) Thermal crystallization of amorphous Si/SiO2 superlattices. Appl Phys Lett 74:2614

    Article  Google Scholar 

  37. Zucchi IA, Poliani E, Perego M (2010) Microdomain orientation dependence on thickness in thin films of cylinder-forming PS-b-PMMA. Nanotechnology 21:185304

    Article  Google Scholar 

Download references

Acknowledgments

This research activity was financially supported by the ERANET PLUS “NanoSci-E+” consortium through the NANO-BLOCK (“NANO-device fabrication using BLOCK-copolymer based technology”) project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michele Perego.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perego, M., Andreozzi, A., Seguini, G. et al. Silicon crystallization in nanodot arrays organized by block copolymer lithography. J Nanopart Res 16, 2775 (2014). https://doi.org/10.1007/s11051-014-2775-6

Download citation

Keywords

  • Si nanocrystals
  • Block copolymers
  • E-beam evaporation
  • Crystallization
  • Self-assembly
  • Nanolithography
  • TEM