Skip to main content
Log in

Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe2O4) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ~15.7 kA/m show stable temperatures ~48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe2O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baldi G, Bonacchi D, Franchini MC, Gentili D, Lorenzi G, Ricci A, Ravagli C (2007) Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers. Langmuir 23(7):4026–4028

    Article  Google Scholar 

  • Baronzio GF, Hager ED (2006) Hyperthermia in cancer treatment: a primer. Springer, Berlin. doi:10.1007/978-0-387-33441-7

  • Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R198–R206. doi:10.1088/0022-3727/36/13/203 Pii S0022-3727(03)38650-4

    Article  Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Article  Google Scholar 

  • Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54(13):9288–9296

    Article  Google Scholar 

  • Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27(17):1140–1142

    Article  Google Scholar 

  • Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. IEEE/Wiley, Hoboken

    Google Scholar 

  • Dai Q, Lam M, Swanson S, Yu R-HR, Milliron DJ, Topuria T, Jubert P-O, Nelson A (2010) Monodisperse cobalt ferrite nanomagnets with uniform silica coatings. Langmuir 26(22):17546–17551

    Article  Google Scholar 

  • Daou TJ, Grenèche JM, Pourroy G, Buathong S, Derory A, Ulhaq-Bouillet C, Donnio B, Guillon D, Begin-Colin S (2008) Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem Mater 20(18):5869–5875. doi:10.1021/cm801405n

    Article  Google Scholar 

  • De Gennes P (1987) Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27(3):189–209

    Article  Google Scholar 

  • Doyle PS, Bibette J, Bancaud A, Viovy J-L (2002) Self-assembled magnetic matrices for DNA separation chips. Science 295(5563):2237. doi:10.1126/science.1068420

    Article  Google Scholar 

  • Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LM, Muñoz JS, Mikhov M (1998) Magnetic properties and Mössbauer spectra of nanosized CoFe2O4 powders. J Magn Magn Mater 183(1–2):163–172. doi:10.1016/S0304-8853(97)01031-7

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  • Halavaara J, Tervahartiala P, Isoniemi H, Höckerstedt K (2002) Efficacy of sequential use of superparamagnetic iron oxide and gadolinium in liver MR imaging. Acta Radiol 43(2):180–185

    Article  Google Scholar 

  • Hergt R, Andrä W (2007) Magnetic hyperthermia and thermoablation. In: Andrä W, Nowak H (eds) Magnetism in medicine, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin. doi:10.1002/9783527610174.fmatter

    Google Scholar 

  • Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311(1):187–192. doi:10.1016/j.jmmm.2006.10.1156

    Article  Google Scholar 

  • Hilger I, Andrä W, Hergt R, Hiergeist R, Schubert H, Kaiser WA (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice1. Radiology 218(2):570–575

    Article  Google Scholar 

  • Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419. doi:10.1016/S0304-8853(99)00088-8

    Article  Google Scholar 

  • Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang D (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100(30):12142–12153. doi:10.1021/jp960224x

    Article  Google Scholar 

  • Kodama RH, Berkowitz AE, McNiff JEJ, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77(2):394–397

    Article  Google Scholar 

  • Krishna Surendra M, Kannan D, Ramachandra Rao MS (2011) Magnetic and dielectric properties study of cobalt ferrite nanoparticles synthesized by co-precipitation method. In: MRS proceedings 1368:mrss11-1368-ww1311-1340-1345. doi:10.1557/opl.2011.1281

  • Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46(7):2523

    Article  Google Scholar 

  • Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422

    Article  Google Scholar 

  • Lewin M, Carlesso N, Tung C-H, Tang X-W, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotech 18(4):410–414

    Article  Google Scholar 

  • Lin C-L, Lee C-F, Chiu W-Y (2005) Preparation and properties of poly (acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J Colloid Interface Sci 291(2):411–420

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167–R181. doi:10.1088/0022-3727/36/13/201 Pii S0022-3727(03)40035-1

    Article  Google Scholar 

  • Park T-J, Papaefthymiou GC, Moodenbaugh AR, Mao Y, Wong SS (2005) Synthesis and characterization of submicron single-crystalline Bi2Fe4O9 cubes. J Mater Chem 15(21):2099–2105. doi:10.1039/B501552A

    Article  Google Scholar 

  • Pham Hoai L, Van Pham T, Nguyen Anh T, Nguyen Chi T, Do Hung M, Nguyen Xuan P, Le Van H (2009) Magnetic fluid based on Fe3O4 nanoparticles: preparation and hyperthermia application. J Phys Conf Ser 187(1):012069

    Google Scholar 

  • Pineiro-Redondo Y, Banobre-Lopez M, Pardinas-Blanco I, Goya G, Lopez-Quintela MA, Rivas J (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6(1):383. doi:10.1186/1556-276X-6-383

    Article  Google Scholar 

  • Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, Banerjee R, Bahadur D (2007) Comparative evaluation of heating ability and biocompatibility of different ferrite based magnetic fluids for hyperthermia application. J Biomed Mater Res B Appl Biomater 81(1):12–22. doi:10.1002/jbm.b.30630

    Article  Google Scholar 

  • Purushotham S, Ramanujan R (2010) Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys 107(11):114701–114709

    Article  Google Scholar 

  • Rafique M, Pan L, Javed Q-U-A, Iqbal M, Yang L (2012) Influence of NaBH4 on the size, composition, and magnetic properties of CoFe2O4 nanoparticles synthesized by hydrothermal method. J Nanopart Res 14(10):1–12. doi:10.1007/s11051-012-1189-6

    Google Scholar 

  • Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17(11):2783

    Article  Google Scholar 

  • Romanini D, Braia M, Angarten RG, Loh W, Picó G (2007) Interaction of lysozyme with negatively charged flexible chain polymers. J Chromatogr B 857(1):25–31. doi:10.1016/j.jchromb.2007.06.025

    Article  Google Scholar 

  • Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252(1–3):370–374. doi:10.1016/S0304-8853(02)00706-0

    Article  Google Scholar 

  • Seshadri G, Thaokar R, Mehra A (2014) Optimum size of nanorods for heating application. J Magn Magn Mater 362:165–171

    Article  Google Scholar 

  • Shao D, Xu K, Song X, Hu J, Yang W, Wang C (2009) Effective adsorption and separation of lysozyme with PAA-modified Fe < sub > 3 </sub > O < sub > 4 </sub > @ silica core/shell microspheres. J Colloid Interface Sci 336(2):526–532

    Article  Google Scholar 

  • Surendra MK, Dutta R, Rao MR (2014) Realization of highest specific absorption rate near superparamagnetic limit of CoFe2O4 colloids for magnetic hyperthermia applications. Mater Res Express 1(2):026107

    Article  Google Scholar 

  • Tae-Jin Park GCP, Viescas Arthur J, Moodenbaugh Arnold R, Wong Stanislaus S (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7(3):766–772

    Article  Google Scholar 

  • Zhang JL, Boyd C, Luo WL (1996) Two mechanisms and a scaling relation for dynamics in ferrofluids. Phys Rev Lett 77(2):390–393. doi:10.1103/PhysRevLett.77.390

    Article  Google Scholar 

Download references

Acknowledgments

The author MKS wants to thank CSIR, New Delhi for CSIR-SRF financial support. We thank DST for establishing “Nano Functional Materials Technology Center” at IIT Madras and for DST Project No: SR/S3/ME/0032/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ramachandra Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna Surendra, M., Annapoorani, S., Ansar, E.B. et al. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles. J Nanopart Res 16, 2773 (2014). https://doi.org/10.1007/s11051-014-2773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2773-8

Keywords

Navigation