Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound

Abstract

This work seeks to produce β-carotene nanoparticles by ultrasound-assisted antisolvent precipitation and to understand the influences of the various process parameters on the synthesized nanoparticles. At the active concentration of 5–15 mg/ml, 112–141 nm β-carotene particles were precipitated under 1 min ultrasound (18 W); while precipitation without ultrasound resulted in 144–365 nm particles. Without ultrasound, addition of the active solution to water (antisolvent) produced 241 nm particles while addition of water to active solution led to bigger particles, i.e., 519 nm. When the precipitation was carried out under ultrasound, the particle size had only a small increment from 117 to 132 nm. Furthermore, active/antisolvent volume ratio influenced particle size significantly; the particle size decreased from 432 to 223 nm as the active/antisolvent volume ratio decreased from 1:1 to 1:4 without ultrasound. However, the smallest β-carotene particles (117 nm) were precipitated with active/antisolvent volume ratio at 1:2 under ultrasound. Nanoparticles precipitated under ultrasound showed faster dissolution rate in comparison with the raw active and nanoparticles precipitated without ultrasound.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15

    Article  Google Scholar 

  2. Amara N, Ratsimba B, Wilhelm A-M, Delmas H (2001) Crystallization of potash alum: effect of power ultrasound. Ultrason Sonochem 8:265–270

    Article  Google Scholar 

  3. Beck C, Dalvi SV, Dave RN (2010) Controlled liquid antisolvent precipitation using a rapid mixing device. Chem Eng Sci 65:5669–5675

    Article  Google Scholar 

  4. Burton G, Ingold K (1984) β-Carotene: an unusual type of lipid antioxidant. Science 224:569–573

    Article  Google Scholar 

  5. Chari K, Antalek B, Kowalczyk J, Eachus RS, Chen T (1999) Polymer-surfactant interaction and stability of amorphous colloidal particles. J Phys Chem B 103:9867–9872

    Article  Google Scholar 

  6. Chen JF, Zhang JY, Shen ZG, Zhong J, Yun J (2006) Preparation and characterization of amorphous cefuroxime axetil drug nanoparticles with novel technology: high-gravity antisolvent precipitation. Ind Eng Chem Res 45:8723–8727

    Article  Google Scholar 

  7. Choi YJ, Chung ST, Oh M, Kim HS (2005) Investigation of crystallization in a jet Y-mixer by a hybrid computational fluid dynamics and process simulation approach. Cryst Growth Des 5:959–968

    Article  Google Scholar 

  8. Dalvi SV, Dave RN (2009) Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation. Ind Eng Chem Res 48:7581–7593

    Article  Google Scholar 

  9. Dalvi SV, Dave RN (2010) Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation. Int J Pharm 387:172–179

    Article  Google Scholar 

  10. Dhumal RS, Biradar SV, Yamamura S, Paradkar AR, York P (2008) Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability. Eur J Pharm Biopharm 70:109–115

    Article  Google Scholar 

  11. Dhumal RS, Biradar SV, Paradkar AR, York P (2009) Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery. Int J Pharm 368:129–137

    Article  Google Scholar 

  12. Doktycz SJ, Suslick KS (1990) Interparticle collisions driven by ultrasound. Science 247:1067–1069

    Article  Google Scholar 

  13. Dong Y, Ng WK, Hu J, Shen S, Tan RBH (2010) A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Int J Pharm 386:256–261

    Article  Google Scholar 

  14. Enomoto N, Maruyama S, Nakagawa Z-E (1997) Agglomeration of silica spheres under ultrasonication. J Mater Res 12:1410–1415

    Article  Google Scholar 

  15. Gassmann P, List M, Schweitzer A, Sucker H (1994) Hydrosols—alternatives for the parenteral application of poorly water soluble drugs. Eur J Pharm Biopharm 40:64–72

    Google Scholar 

  16. Guo Z, Zhang M, Li H, Wang J, Kougoulos E (2005) Effect of ultrasound on anti-solvent crystallization process. J Cryst Growth 273:555–563

    Article  Google Scholar 

  17. Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew Chem Int Ed 40:4330–4361

    Article  Google Scholar 

  18. Hu J, Dong Y, Pastorin G, Ng W, Tan RH (2013) Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers. J Nanopart Res 15:1–12

    Google Scholar 

  19. Jongen N, Bowen P, Lemaı̂tre J, Valmalette J-C, Hofmann H (2000) Precipitation of self-organized copper oxalate polycrystalline particles in the presence of hydroxypropylmethylcellulose (HPMC): control of morphology. J Colloid Interface Sci 226:189–198

    Article  Google Scholar 

  20. Junghanns J-UA, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 3:295

    Google Scholar 

  21. Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62:3–16

    Article  Google Scholar 

  22. Kesisoglou F, Panmai S, Wu Y (2007) Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Del Rev 59:631–644

    Article  Google Scholar 

  23. Kim KJ, Kim JK (2006) Nucleation and supersaturation in drowning-out crystallization using a T-mixer. Chem Eng Technol 29:951–956

    Article  Google Scholar 

  24. Kipp JE, Wong JCT, Doty MJ, Werling J, Rebbeck CL, Brynjelsen S (2003) Method for preparing submicron particle suspensions. United States Patent Application No. 20030031719, 13 February

  25. Lindberg M, Rasmuson ÅC (2000) Supersaturation generation at the feed point in reaction crystallization of a molecular compound. Chem Eng Sci 55:1735–1746

    Article  Google Scholar 

  26. Liu Y, Kathan K, Saad W, Prud’homme RK (2007) Ostwald ripening of β-carotene nanoparticles. Phys Rev Lett 98:036102

    Article  Google Scholar 

  27. Louhi-Kultanen M, Karjalainen M, Rantanen J, Huhtanen M, Kallas J (2006) Crystallization of glycine with ultrasound. Int J Pharm 320:23–29

    Article  Google Scholar 

  28. Luque de Castro M, Priego-Capote F (2007) Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem 14:717–724

    Article  Google Scholar 

  29. Martín A, Mattea F, Gutiérrez L, Miguel F, Cocero MJ (2007) Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process. J Supercrit Fluids 41:138–147

    Article  Google Scholar 

  30. Matteucci ME, Hotze MA, Johnston KP, Williams RO (2006) Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir 22:8951–8959

    Article  Google Scholar 

  31. Nishida I (2004) Precipitation of calcium carbonate by ultrasonic irradiation. Ultrason Sonochem 11:423–428

    Google Scholar 

  32. Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. JACS 19:930–934

    Article  Google Scholar 

  33. Prozorov T, Prozorov R, Suslick KS (2004) High velocity interparticle collisions driven by ultrasound. JACS 126:13890–13891

    Article  Google Scholar 

  34. Ramoneda XA, Ponce-Cevallos PA, Buera MDP, Elizalde BE (2011) Degradation of β-carotene in amorphous polymer matrices. Effect of water sorption properties and physical state. J Sci Food Agric 91:2587–2593

    Article  Google Scholar 

  35. Ribeiro HS, Chu B-S, Ichikawa S, Nakajima M (2008) Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocoll 22:12–17

    Article  Google Scholar 

  36. Rogers TL et al (2004) Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs. Pharm Res 21:2048–2057

    Article  Google Scholar 

  37. Shen H, Hong S, Prud’homme RK, Liu Y (2011) Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles. J Nanopart Res 13:4109–4120

    Article  Google Scholar 

  38. Tan CP, Nakajima M (2005) β-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chem 92:661–671

    Article  Google Scholar 

  39. Werling J, Kipp JE, Sriram R, Doty MJ (2003) Method for preparing submicron suspensions with polymorph control. United States Patent Application No. 20030044433, 6 March

  40. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567

    Article  Google Scholar 

  41. Yuan Y, Gao Y, Zhao J, Mao L (2008) Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int 41:61–68

    Article  Google Scholar 

  42. Zhu Z, Margulis-Goshen K, Magdassi S, Talmon Y, Macosko CW (2010) Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: a model study with β-carotene. J Pharm Sci 99:4295–4306

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by project grant ICES/13-222A02 from A*STAR (Agency for Science, Technology and Research) of Singapore.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fei Sheng or Reginald B. H. Tan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheng, F., Chow, P.S., Dong, Y. et al. Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound. J Nanopart Res 16, 2772 (2014). https://doi.org/10.1007/s11051-014-2772-9

Download citation

Keywords

  • β-carotene
  • Nanoparticles
  • Antisolvent precipitation
  • Ultrasound
  • Mixing
  • Bioavailability