Skip to main content
Log in

Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells’ swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Becker A, Yan O, Kim P, Min Jun K, Julius A Feedback control of many magnetized: Tetrahymena pyriformis cells by exploiting phase inhomogeneity. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 3–7 Nov. 2013 2013. pp 3317-3323. doi:10.1109/IROS.2013.6696828

  • Brown ID, Connolly JG, Kerkut G (1981) Galvanotaxic response of Tetrahymena vorax. Comp Biochem Physiol Part C: Comp Pharmacol 69:281–291

    Article  Google Scholar 

  • Cheang UK, Roy D, Lee JH, Kim MJ (2010) Fabrication and magnetic control of bacteria-inspired robotic microswimmers. Appl Phys Lett 97: 213704

  • Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microsc Artif Swim. Nature 437:862–865

    Article  Google Scholar 

  • Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245. doi:10.1021/nl900186w

    Article  Google Scholar 

  • Ghosh A, Paria D, Singh HJ, Venugopalan PL, Ghosh A (2012) Dynamical configurations and bistability of helical nanostructures under external torque. Phys Rev E 86:031401

    Article  Google Scholar 

  • Ghosh A, Mandal P, Karmakar S, Ghosh A (2013) Analytical theory and stability analysis of an elongated nanoscale object under external torque. Phys Chem Chem Phys 15:10817–10823

    Article  Google Scholar 

  • Jo BH, Van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9:76–81. doi:10.1109/84.825780

    Article  Google Scholar 

  • Kim DH, Casale D, Kőhidai L, Kim MJ (2009) Galvanotactic and phototactic control of Tetrahymena pyriformis as a microfluidic workhorse. Appl Phys Lett 94:163901

    Article  Google Scholar 

  • Kim DH, Cheang UK, Kőhidai L, Byun D, Kim MJ (2010) Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett 97:173702

    Article  Google Scholar 

  • Kim DH, Brigandi SE, Kim P, Byun D, Kim MJ (2011) Characterization of deciliation-regeneration process of tetrahymena pyriformis for cellular robot fabrication. J Bionic Eng 8:273–279

    Article  Google Scholar 

  • Kim DH, Kim PSS, Agung Julius AA, Kim MJ (2012a) Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis. Appl Phys Lett 100: 053702

  • Kim M, Steager E, Julius AA, Agung J (2012b) Microbiorobotics: biologically inspired microscale robotic systems. William Andrew

  • Kim PSS, Becker A, Yan O, Julius AA, Min Jun K (2013) Swarm control of cell-based microrobots using a single global magnetic field. In: Ubiquitous Robots and Ambient Intelligence (URAI), 2013. 10th International Conference on, Oct 30 2013–Nov 2 2013. pp 21–26. doi:10.1109/URAI.2013.6677461

  • Köhidai L, Csaba G (1995) Effects of the mammalian vasoconstrictor the immunocytological detection of endogenous activity. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 111:311–316. doi:10.1016/0742-8413(95)00055-S

    Article  Google Scholar 

  • Köhidai L, Csaba G (1998) Chemotaxis and chemotactic selection induced with cytokines (IL-8, Rantes and TNF-α) in the unicellular Tetrahymena pyriformis. Cytokine 10:481–486

    Article  Google Scholar 

  • Lavin DP, Hatzis C, Srienc F, Fredrickson A (1990) Size effects on the uptake of particles by populations of Tetrahymena pyriformis cells. J Protozool 37:157–163

    Article  Google Scholar 

  • Mahoney AW, Nelson ND, Peyer KE, Nelson BJ, Abbott JJ (2014) Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl Phys Lett 104: 144101

  • Martel S, Tremblay CC, Ngakeng S, Langlois G (2006) Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett 89:233904. doi:10.1063/1.2402221 233904

    Article  Google Scholar 

  • Martel S et al (2009a) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Robot Res 28:1169–1182. doi:10.1177/0278364908104855

    Article  Google Scholar 

  • Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009b) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28:571–582. doi:10.1177/0278364908100924

    Article  Google Scholar 

  • Morozov KI, Leshansky AM (2014) The chiral magnetic nanomotors. Nanoscale 6:1580–1588

    Article  Google Scholar 

  • Nam S-W, Van Noort D, Yang Y, Park S (2007) A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis. Lab Chip 7:638–640. doi:10.1039/b617357h

    Article  Google Scholar 

  • Ogawa N, Oku H, Hashimoto K, Ishikawa M (2006) A physical model for galvanotaxis of Paramecium cell. J Theor Biol 242:314–328. doi:10.1016/j.jtbi.2006.02.021

    Article  Google Scholar 

  • Ou Y, Kim DH, Kim P, Kim MJ, Julius AA (2012) Motion control of magnetized Tetrahymena pyriformis cells by magnetic field with Model Predictive Control. Int J Robot Res. doi:10.1177/0278364912464669

    Google Scholar 

  • Peyer KE, Tottori S, Qiu F, Zhang L, Nelson BJ (2012a) Magnetic helical micromachines. Chem A Eur J 19: 28–38. doi:10.1002/chem.201203364

  • Peyer KE, Zhang L, Nelson BJ (2012b) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale. doi:10.1039/c2nr32554c

    Google Scholar 

  • Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24:811–816. doi:10.1002/adma.201103818

    Article  Google Scholar 

  • Weibel DB, Garstecki P, Ryan D, DiLuzio WR, Mayer M, Seto JE, Whitesides GM (2005) Microoxen: microorganisms to move microscale loads. Proc Natl Acad Sci USA 102:11963–11967. doi:10.1073/pnas.0505481102

    Article  Google Scholar 

  • Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94:064107. doi:10.1063/1.3079655

    Article  Google Scholar 

  • Zhang L, Peyer KE, Nelson BJ (2010) Artificial bacterial flagella for micromanipulation. Lab Chip 10:2203–2215

    Article  Google Scholar 

  • Zhang L, Petit T, Peyer KE, Nelson BJ (2012) Targeted cargo delivery using a rotating nickel nanowire. Nanomedicine: nanotechnology. Biol Med 8:1074–1080

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under CMMI 1000255, CMMI 1000284, and by ARO W911F-11-1-0490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jun Kim.

Additional information

Guest Editors: Leonardo Ricotti, Arianna Menciassi

This article is part of the topical collection on Nanotechnology in Biorobotic Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, P.S.S., Becker, A., Ou, Y. et al. Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control. J Nanopart Res 17, 144 (2015). https://doi.org/10.1007/s11051-014-2746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2746-y

Keywords

Navigation