Abbott J, Peyer K, Lagomarsino M, Zhang L, Dong L, Kaliakatsos I, Nelson B (2009) How should microrobots swim? Int J Robot Res 28:1434–1447
Article
Google Scholar
Avron JE, Kenneth O, Oaknin DH (2005) Pushmepullyou: an efficient micro-swimmer. New J Phys 7:234
Article
Google Scholar
Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Controll Release 153:198–205
Article
Google Scholar
Bajpai I, Balani K, Basu B (2013) Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites. J Am Ceram Soc 96:2100–2108. doi:10.1111/jace.12386
Article
Google Scholar
Basarkar A, Singh J (2007) Nanoparticulate systems for polynucleotide delivery. Int J Nanomed 2:353–360
Google Scholar
Biswal SL, Gast AP (2004) Rotational dynamics of semiflexible paramagnetic particle chains. Phys Rev E 69:041406
Article
Google Scholar
Cēbers A, Javaitis I (2004) Dynamics of a flexible magnetic chain in a rotating magnetic field. Phys Rev E 69:021404
Google Scholar
Cheang UK, Roy D, Lee JH, Kim MJ (2010) Fabrication and magnetic control of bacteria-inspired robotic microswimmers. Appl Phys Lett 97:213704. doi:10.1063/1.3518982
Article
Google Scholar
Cheang UK, Lee K, Julius AA, Kim MJ (2014a) Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl Phys Lett 105:083705
Article
Google Scholar
Cheang UK, Meshkati F, Kim D, Kim MJ, Fu HC (2014b) Minimal geometric requirements for micropropulsion via magnetic rotation. Phys Rev E 90:033007
Article
Google Scholar
Cheong FC, Grier DG (2010) Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy. Opt Express 18:6555–6562
Article
Google Scholar
Clearfield A (1996) Current opinion in solid state and materials science. Curr Sci 1:268
Google Scholar
Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60
Article
Google Scholar
Dogangil G, Ergeneman O, Abbott JJ, Pané S, Hall H, Muntwyler S, Nelson BJ (2008) Toward targeted retinal drug delivery with wireless magnetic microrobots. In: IEEE international conference on intelligent robots and systems, Nice, pp 1921–1926
Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA (2005) Microscopic artificial swimmers. Nature 437:862–865
Article
Google Scholar
Elimelech M, Jia X, Gregory J, Williams R (1998) Particle deposition and aggregation: measurement, modelling and simulation. Butterworth-Heinemann, Boston
Google Scholar
Fang W-X, He Z-H, Xu X-Q, Mao Z-Q, Shen H (2007) Magnetic-field-induced chain-like assembly structures of Fe3O4 nanoparticles. Europhys Lett 77:68004
Article
Google Scholar
Ferreira A, Agnus J, Chaillet N, Breguet J-M (2004) A smart microrobot on chip: design, identification, and control. IEEE/ASME Trans Mechatron 9:508–519
Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S (2013a) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2:1037–1044
Article
Google Scholar
Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S (2013b) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthcare Mater 2:1037–1044
Article
Google Scholar
Gao W et al (2012) Cargo-Towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8:460–467. doi:10.1002/smll.201101909
Article
Google Scholar
Gao W, D’Agostino M, Garcia-Gradilla V, Orozco J, Wang J (2013) Multi-fuel driven Janus micromotors. Small 9:467–471
Article
Google Scholar
Gauger E, Stark H (2006) Numerical study of a microscopic artificial swimmer. Phys Rev E 74:021907
Article
Google Scholar
Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490
Article
Google Scholar
Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245. doi:10.1021/nl900186w
Article
Google Scholar
Ghosh A, Paria D, Singh HJ, Venugopalan PL, Ghosh A (2012) Dynamical configurations and bistability of helical nanostructures under external torque. Phys Rev E 86:031401
Article
Google Scholar
Ghosh A, Mandal P, Karmakar S, Ghosh A (2013a) Analytical theory and stability analysis of an elongated nanoscale object under external torque. Phys Chem Chem Phys 15:10817–10823
Article
Google Scholar
Ghosh A, Paria D, Rangarajan G, Ghosh A (2013b) Velocity fluctuations in helical propulsion: how small can a propeller Be. J Phys Chem Lett 5:62–68
Article
Google Scholar
Grady M, Howard M III, Molloy J, Ritter R, Quate E, Gillies G (1990) Nonlinear magnetic stereotaxis: three-dimensional, in vivo remote magnetic manipulation of a small object in canine brain. Med Phys 17:405–415
Article
Google Scholar
Kim DH, Cheang UK, Kohidai L, Byun D, Kim MJ (2010) Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett 97:173702
Article
Google Scholar
Kim S et al (2013a) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater. doi:10.1002/adma.201300223
Google Scholar
Kim S et al (2013b) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 25:5863–5868
Article
Google Scholar
Leoni M, Kotar J, Bassetti B, Cicuta P, Lagomarsino MC (2009) A basic swimmer at low Reynolds number. Soft Matter 5:472–476
Article
Google Scholar
Liu X, Kim K, Zhang Y, Sun Y (2009) Nanonewton force sensing and control in microrobotic cell manipulation. Int J Robot Res 28:1065–1076
Article
Google Scholar
Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25:6588–6591
Google Scholar
Manesh KM, Cardona M, Yuan R, Clark M, Kagan D, Balasubramanian S, Wang J (2010) Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano 4:1799–1804
Article
Google Scholar
Martel S et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114105
Article
Google Scholar
Mathieu J-B, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53:292–299
Article
Google Scholar
Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4:385–392
Article
Google Scholar
Mori N, Kuribayashi K, Takeuchi S (2010) Artificial flagellates: analysis of advancing motions of biflagellate micro-objects. Appl Phys Lett 96:083701. doi:10.1063/1.3327522
Article
Google Scholar
Najafi A, Golestanian R (2004) Simple swimmer at low Reynolds number: three linked spheres. Phys Rev E 69:062901
Article
Google Scholar
Ogrin FY, Petrov PG, Winlove CP (2008) Ferromagnetic microswimmers. Phys Rev Lett 100:218102
Article
Google Scholar
Ortega A, de la Torre JG (2003) Hydrodynamic properties of rodlike and disklike particles in dilute solution. J Chem Phys 119:9914–9919
Article
Google Scholar
Peyer KE, Zhang L, Nelson BJ (2011) Localized non-contact manipulation using artificial bacterial flagella Appl Phys Lett 99:174101 doi:10.1063/1.3655904
Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11
Article
Google Scholar
Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223
Article
Google Scholar
Solovev AA, Mei Y, Bermúdez Ureña E, Huang E, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–1692
Article
Google Scholar
Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) Self-propelled nanotools. ACS Nano 6:1751–1756
Article
Google Scholar
Steager EB, Sakar MS, Kumar V, Pappas GJ, Kim MJ (2011) Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 21:035001
Article
Google Scholar
Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Delivery Rev 60:1252–1265
Article
Google Scholar
Tabak AF, Temel FZ, Yesilyurt S (2011) Comparison on experimental and numerical results for helical swimmers inside channels. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 463–468
Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31:184–193
Article
Google Scholar
Temel FZ, Yesilyurt S (2011) Magnetically actuated micro swimming of bio-inspired robots in mini channels. In: International conference on mechatronics, Istanbul, pp 342-347. 13–15 April 2011
Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24:811–816. doi:10.1002/adma.201103818
Article
Google Scholar
Vach PJ et al (2013) Selecting for function: solution synthesis of magnetic nanopropellers. Nano Lett 13:5373–5378. doi:10.1021/nl402897x
Article
Google Scholar
Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2011) MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu Rev Biomed Eng 13:157–184
Article
Google Scholar
Venugopalan PL, Sai R, Chandorkar Y, Basu B, Shivashankar S, Ghosh A (2014) Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett 14:1968–1975. doi:10.1021/nl404815q
Article
Google Scholar
Vuppu AK, Garcia AA, Hayes MA (2003) Video microscopy of dynamically aggregated paramagnetic particle chains in an applied rotating magnetic field. Langmuir 19:8646–8653. doi:10.1021/la034195a
Article
Google Scholar
Xi W, Solovev AA, Ananth AN, Gracias DH, Sanchez S, Schmidt OG (2013) Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale 5:1294–1297
Article
Google Scholar
Yesin KB, Exner P, Vollmers K, Nelson BJ (2005) Design and control of in vivo magnetic microrobots Medical Image Computing and Computer-Assisted Intervention 3749:819–826
Google Scholar
Ytreberg FM, McKay SR (2000) Calculated properties of field-induced aggregates in ferrofluids. Phys Rev E 61:4107
Article
Google Scholar
Zhang H, Hutmacher DW, Chollet F, Poo AN, Burdet E (2005) Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering. Macromol Biosci 5:477–489
Article
Google Scholar