Self-assembly of robotic micro- and nanoswimmers using magnetic nanoparticles

Research Paper
Part of the following topical collections:
  1. Nanotechnology in Biorobotic Systems

Abstract

Micro- and nanoscale robotic swimmers are very promising to significantly enhance the performance of particulate drug delivery by providing high accuracy at extremely small scales. Here, we introduce micro- and nanoswimmers fabricated using self-assembly of nanoparticles and control via magnetic fields. Nanoparticles self-align into parallel chains under magnetization. The swimmers exhibit flexibility under a rotating magnetic field resulting in chiral structures upon deformation, thereby having the prerequisite for non-reciprocal motion to move about at low Reynolds number. The swimmers are actuated wirelessly using an external rotating magnetic field supplied by approximate Helmholtz coils. By controlling the concentration of the suspended magnetic nanoparticles, the swimmers can be modulated into different sizes. Nanoscale swimmers are largely influenced by Brownian motion, as observed from their jerky trajectories. The microswimmers, which are roughly three times larger, are less vulnerable to the effects from Brownian motion. In this paper, we demonstrate responsive directional control of micro- and nanoswimmers and compare their respective diffusivities and trajectories to characterize the implications of Brownian disturbance on the motions of small and large swimmers. We then performed a simulation using a kinematic model for the magnetic swimmers including the stochastic nature of Brownian motion.

Keywords

Micro- and nanorobotics Micro- and nanoswimmers Low Reynolds number Magnetic self-assembly Magnetic nanoparticles 

Supplementary material

11051_2014_2737_MOESM1_ESM.mpg (88.4 mb)
Supplementary material 1 (MPG 90,492 kb)

Supplementary material 2 (MPG 63,864 kb)

References

  1. Abbott J, Peyer K, Lagomarsino M, Zhang L, Dong L, Kaliakatsos I, Nelson B (2009) How should microrobots swim? Int J Robot Res 28:1434–1447CrossRefGoogle Scholar
  2. Avron JE, Kenneth O, Oaknin DH (2005) Pushmepullyou: an efficient micro-swimmer. New J Phys 7:234CrossRefGoogle Scholar
  3. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Controll Release 153:198–205CrossRefGoogle Scholar
  4. Bajpai I, Balani K, Basu B (2013) Spark plasma sintered HA-Fe3O4-based multifunctional magnetic biocomposites. J Am Ceram Soc 96:2100–2108. doi:10.1111/jace.12386 CrossRefGoogle Scholar
  5. Basarkar A, Singh J (2007) Nanoparticulate systems for polynucleotide delivery. Int J Nanomed 2:353–360Google Scholar
  6. Biswal SL, Gast AP (2004) Rotational dynamics of semiflexible paramagnetic particle chains. Phys Rev E 69:041406CrossRefGoogle Scholar
  7. Cēbers A, Javaitis I (2004) Dynamics of a flexible magnetic chain in a rotating magnetic field. Phys Rev E 69:021404Google Scholar
  8. Cheang UK, Roy D, Lee JH, Kim MJ (2010) Fabrication and magnetic control of bacteria-inspired robotic microswimmers. Appl Phys Lett 97:213704. doi:10.1063/1.3518982 CrossRefGoogle Scholar
  9. Cheang UK, Lee K, Julius AA, Kim MJ (2014a) Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl Phys Lett 105:083705CrossRefGoogle Scholar
  10. Cheang UK, Meshkati F, Kim D, Kim MJ, Fu HC (2014b) Minimal geometric requirements for micropropulsion via magnetic rotation. Phys Rev E 90:033007CrossRefGoogle Scholar
  11. Cheong FC, Grier DG (2010) Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy. Opt Express 18:6555–6562CrossRefGoogle Scholar
  12. Clearfield A (1996) Current opinion in solid state and materials science. Curr Sci 1:268Google Scholar
  13. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60CrossRefGoogle Scholar
  14. Dogangil G, Ergeneman O, Abbott JJ, Pané S, Hall H, Muntwyler S, Nelson BJ (2008) Toward targeted retinal drug delivery with wireless magnetic microrobots. In: IEEE international conference on intelligent robots and systems, Nice, pp 1921–1926Google Scholar
  15. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA (2005) Microscopic artificial swimmers. Nature 437:862–865CrossRefGoogle Scholar
  16. Elimelech M, Jia X, Gregory J, Williams R (1998) Particle deposition and aggregation: measurement, modelling and simulation. Butterworth-Heinemann, BostonGoogle Scholar
  17. Fang W-X, He Z-H, Xu X-Q, Mao Z-Q, Shen H (2007) Magnetic-field-induced chain-like assembly structures of Fe3O4 nanoparticles. Europhys Lett 77:68004CrossRefGoogle Scholar
  18. Ferreira A, Agnus J, Chaillet N, Breguet J-M (2004) A smart microrobot on chip: design, identification, and control. IEEE/ASME Trans Mechatron 9:508–519Google Scholar
  19. Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S (2013a) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2:1037–1044CrossRefGoogle Scholar
  20. Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S (2013b) Chitosan electrodeposition for microrobotic drug delivery. Adv Healthcare Mater 2:1037–1044CrossRefGoogle Scholar
  21. Gao W et al (2012) Cargo-Towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8:460–467. doi:10.1002/smll.201101909 CrossRefGoogle Scholar
  22. Gao W, D’Agostino M, Garcia-Gradilla V, Orozco J, Wang J (2013) Multi-fuel driven Janus micromotors. Small 9:467–471CrossRefGoogle Scholar
  23. Gauger E, Stark H (2006) Numerical study of a microscopic artificial swimmer. Phys Rev E 74:021907CrossRefGoogle Scholar
  24. Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490CrossRefGoogle Scholar
  25. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245. doi:10.1021/nl900186w CrossRefGoogle Scholar
  26. Ghosh A, Paria D, Singh HJ, Venugopalan PL, Ghosh A (2012) Dynamical configurations and bistability of helical nanostructures under external torque. Phys Rev E 86:031401CrossRefGoogle Scholar
  27. Ghosh A, Mandal P, Karmakar S, Ghosh A (2013a) Analytical theory and stability analysis of an elongated nanoscale object under external torque. Phys Chem Chem Phys 15:10817–10823CrossRefGoogle Scholar
  28. Ghosh A, Paria D, Rangarajan G, Ghosh A (2013b) Velocity fluctuations in helical propulsion: how small can a propeller Be. J Phys Chem Lett 5:62–68CrossRefGoogle Scholar
  29. Grady M, Howard M III, Molloy J, Ritter R, Quate E, Gillies G (1990) Nonlinear magnetic stereotaxis: three-dimensional, in vivo remote magnetic manipulation of a small object in canine brain. Med Phys 17:405–415CrossRefGoogle Scholar
  30. Kim DH, Cheang UK, Kohidai L, Byun D, Kim MJ (2010) Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett 97:173702CrossRefGoogle Scholar
  31. Kim S et al (2013a) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater. doi:10.1002/adma.201300223 Google Scholar
  32. Kim S et al (2013b) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 25:5863–5868CrossRefGoogle Scholar
  33. Leoni M, Kotar J, Bassetti B, Cicuta P, Lagomarsino MC (2009) A basic swimmer at low Reynolds number. Soft Matter 5:472–476CrossRefGoogle Scholar
  34. Liu X, Kim K, Zhang Y, Sun Y (2009) Nanonewton force sensing and control in microrobotic cell manipulation. Int J Robot Res 28:1065–1076CrossRefGoogle Scholar
  35. Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25:6588–6591Google Scholar
  36. Manesh KM, Cardona M, Yuan R, Clark M, Kagan D, Balasubramanian S, Wang J (2010) Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano 4:1799–1804CrossRefGoogle Scholar
  37. Martel S et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114105CrossRefGoogle Scholar
  38. Mathieu J-B, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53:292–299CrossRefGoogle Scholar
  39. Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4:385–392CrossRefGoogle Scholar
  40. Mori N, Kuribayashi K, Takeuchi S (2010) Artificial flagellates: analysis of advancing motions of biflagellate micro-objects. Appl Phys Lett 96:083701. doi:10.1063/1.3327522 CrossRefGoogle Scholar
  41. Najafi A, Golestanian R (2004) Simple swimmer at low Reynolds number: three linked spheres. Phys Rev E 69:062901CrossRefGoogle Scholar
  42. Ogrin FY, Petrov PG, Winlove CP (2008) Ferromagnetic microswimmers. Phys Rev Lett 100:218102CrossRefGoogle Scholar
  43. Ortega A, de la Torre JG (2003) Hydrodynamic properties of rodlike and disklike particles in dilute solution. J Chem Phys 119:9914–9919CrossRefGoogle Scholar
  44. Peyer KE, Zhang L, Nelson BJ (2011) Localized non-contact manipulation using artificial bacterial flagella Appl Phys Lett 99:174101 doi:10.1063/1.3655904
  45. Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11CrossRefGoogle Scholar
  46. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRefGoogle Scholar
  47. Solovev AA, Mei Y, Bermúdez Ureña E, Huang E, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–1692CrossRefGoogle Scholar
  48. Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) Self-propelled nanotools. ACS Nano 6:1751–1756CrossRefGoogle Scholar
  49. Steager EB, Sakar MS, Kumar V, Pappas GJ, Kim MJ (2011) Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 21:035001CrossRefGoogle Scholar
  50. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Delivery Rev 60:1252–1265CrossRefGoogle Scholar
  51. Tabak AF, Temel FZ, Yesilyurt S (2011) Comparison on experimental and numerical results for helical swimmers inside channels. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 463–468Google Scholar
  52. Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31:184–193CrossRefGoogle Scholar
  53. Temel FZ, Yesilyurt S (2011) Magnetically actuated micro swimming of bio-inspired robots in mini channels. In: International conference on mechatronics, Istanbul, pp 342-347. 13–15 April 2011Google Scholar
  54. Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24:811–816. doi:10.1002/adma.201103818 CrossRefGoogle Scholar
  55. Vach PJ et al (2013) Selecting for function: solution synthesis of magnetic nanopropellers. Nano Lett 13:5373–5378. doi:10.1021/nl402897x CrossRefGoogle Scholar
  56. Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2011) MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu Rev Biomed Eng 13:157–184CrossRefGoogle Scholar
  57. Venugopalan PL, Sai R, Chandorkar Y, Basu B, Shivashankar S, Ghosh A (2014) Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett 14:1968–1975. doi:10.1021/nl404815q CrossRefGoogle Scholar
  58. Vuppu AK, Garcia AA, Hayes MA (2003) Video microscopy of dynamically aggregated paramagnetic particle chains in an applied rotating magnetic field. Langmuir 19:8646–8653. doi:10.1021/la034195a CrossRefGoogle Scholar
  59. Xi W, Solovev AA, Ananth AN, Gracias DH, Sanchez S, Schmidt OG (2013) Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale 5:1294–1297CrossRefGoogle Scholar
  60. Yesin KB, Exner P, Vollmers K, Nelson BJ (2005) Design and control of in vivo magnetic microrobots Medical Image Computing and Computer-Assisted Intervention 3749:819–826Google Scholar
  61. Ytreberg FM, McKay SR (2000) Calculated properties of field-induced aggregates in ferrofluids. Phys Rev E 61:4107CrossRefGoogle Scholar
  62. Zhang H, Hutmacher DW, Chollet F, Poo AN, Burdet E (2005) Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering. Macromol Biosci 5:477–489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mechanical Engineering & MechanicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations