Effect of magnetocrystalline anisotropy on the magnetic properties of electrodeposited Co–Pt nanowires

  • Muhammad Shahid Arshad
  • Sašo Šturm
  • Janez Zavašnik
  • Alvaro P. Espejo
  • Juan Escrig
  • Matej Komelj
  • Paul J. McGuiness
  • Spomenka Kobe
  • Kristina Žužek Rožman
Research Paper

Abstract

We report on the influence of the magnetocrystalline anisotropy on the easy magnetization axis, magnetization reversal and magnetic domain configurations of electrodeposited Co–Pt nanowires with lengths in the range of 4–6 µm and a diameter of 250 nm. The transmission electron microscopy and the X-ray diffractions revealed that the nanowires are composed of an intermixture of hcp- and fcc-textured crystal structures. The crystallographic orientations of both phases were such that the \(\left[ {00\bar{1}} \right]\) of the hcp phase and the [111] of the fcc phase are pointing almost perpendicular to the nanowire axis. This observation allows us to understand the perpendicular easy magnetization axis of the nanowire arrays measured with vibrating sample magnetometry. Analytical calculations of the angular dependence of the coercivity revealed that the magnetization reversal changes from vortex to transverse mode at the applied field angle θ = 30°. Fitting of the experiment to these calculations results in a perpendicular effective anisotropy constant (Keff = 2.6 × 104 J/m3) in nanowires which can be ascribed to the strong magnetocrystalline anisotropy. Furthermore, the magnetic domain configurations of individual nanowires of length range 4 < L < 6 µm are studied using magnetic force microscopy. This reveals a spatial magnetization modulation along the length of the nanowires, which was found to be length dependent. Such an intrinsic modulation is attributed to the competition between the magnetocrystalline anisotropy and the shape anisotropy in the nanowires. We believe that this interplay between anisotropies gives rise to a magnetic configuration involving vortex-like structure with alternating chirality along the length of the nanowires.

Keywords

Co–Pt nanowire arrays Single Co–Pt nanowire Effective magnetic anisotropy Angular dependence of the coercivity Magnetization reversal modes Periodic magnetic domains Magnetization of a single Co–Pt nanowire 

References

  1. Aboaf JA, Herd SR, Klokholm E (1983) Magnetic properties and structure of cobalt-platinum thin films. IEEE Trans Magn 19:1514–1519CrossRefGoogle Scholar
  2. Albrecht O, Zierold R, Allende S, Escrig J, Patzig C, Rauschenbach B, Nielsch K, Gorlitz D (2011) Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes. J Appl Phys 109:093910–093915CrossRefGoogle Scholar
  3. Allende S, Escrig J, Altbir D, Salcedo E, Bahiana M (2008) Angular dependence of the transverse and vortex modes in magnetic nanotubes. EPJ B 66:37–40CrossRefGoogle Scholar
  4. Arshad MS, Pečko D, Šturm S, Escrig J, Komelj M, McGuiness PJ, Kobe S, Rožman KŽ (2014) Angular dependence of the coercivity in electrodeposited Co-Pt nanostructures with a tube-wire morphology. IEEE Trans Magn. doi: 10.1109/TMAG:20142320911 Accepted for Publication
  5. Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14:517–526CrossRefGoogle Scholar
  6. Bergmann G, Lu JG, Tao Y, Thompson RS (2008) Frustrated magnetization in Co nanowires: competition between crystal anisotropy and demagnetization energy. Phys Rev B 77:054415–054420CrossRefGoogle Scholar
  7. Bolzoni F, Leccabue F, Panizzieri R, Pareti L (1984) Magnetocrystalline anisotropy and phase transformation in Co–Pt alloy. IEEE Trans Magn 20:1625–1627CrossRefGoogle Scholar
  8. Bowling RJ, Packard RT, McCreery RL (1989) Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure. J Am Chem Soc 111:1217–1223CrossRefGoogle Scholar
  9. Bran C, Butenko AB, Kiselev NS, Wolff U, Schultz L, Hellwig O, Rößler UK, Bogdanov AN, Neu V (2009) Evolution of stripe and bubble domains in antiferromagnetically coupled [(Co/Pt)8/Co/Ru]18 multilayers. Phys Rev B 79:024430–024434CrossRefGoogle Scholar
  10. Bran C, Ivanov YP, Trabada DG, Tomkowicz J, del Real RP, Chubykalo-Fesenko O, Vazquez M (2013) Structural dependence of magnetic properties in co-based nanowires: experiments and micromagnetic simulations. IEEE Trans Magn 49:4491–4497CrossRefGoogle Scholar
  11. Carignan L-P, Lacroix C, Ouimet A, Ciureanu M, Yelon A, Ménard D (2007) Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires. J Appl Phys 102:023905–023915CrossRefGoogle Scholar
  12. Cho JU, Wu J-H, Min JH, Ko SP, Soh JY, Liu QX, Kim YK (2006) Control of magnetic anisotropy of Co nanowires. J Magn Magn Mater 303:e281–e285CrossRefGoogle Scholar
  13. Ciureanu M, Beron F, Clime L, Ciureanu P, Yelon A, Ovari TA, Cochrane RW, Normandin F, Veres T (2005) Magnetic properties of electrodeposited CoFeB thin films and nanowire arrays. Electrochim Acta 50:4487–4497CrossRefGoogle Scholar
  14. Cortés M, Gómez E, Vallés E (2013) Electrochemical growth of CoPt nanowires of different aspect ratio and their magnetic properties. J Electroanal Chem 689:69–75CrossRefGoogle Scholar
  15. Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, HobokenGoogle Scholar
  16. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall Inc., Upper Saddle RiverGoogle Scholar
  17. Dahmane Y, Cagnon L, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A (2006) Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates. J Phys D Appl Phys 39:4523–4528CrossRefGoogle Scholar
  18. De La Medina JT, Darques M, Piraux L, Encinas A (2009) Application of the anisotropy field distribution method to arrays of magnetic nanowires. J Appl Phys 105:023909–023918CrossRefGoogle Scholar
  19. Eagleton TS, Mallet J, Cheng X, Wang J, Chien C-L, Searson PC (2005) Electrodeposition of CoxPt1−x thin films. J Electrochem Soc 152:C27–C31CrossRefGoogle Scholar
  20. Encinas-Oropesa A, Demand M, Piraux L, Ebels U, Huynen I (2001) Effect of dipolar interactions on the ferromagnetic resonance properties in arrays of magnetic nanowires. J Appl Phys 89:3CrossRefGoogle Scholar
  21. Erickson RP, Mills aDL (2009) Theory of the undulating magnetic ground state of cylindrical cobalt nanowires. Phys Rev B 80:214410–214418CrossRefGoogle Scholar
  22. Escrig J, Altbir D, Jaafar M, Navas D, Asenjo A, Vázquez M (2007) Remanence of Ni nanowire arrays: influence of size and labyrinth magnetic structure. Phys Rev B 75:184429–184434CrossRefGoogle Scholar
  23. Escrig J, Bachmann J, Jing J, Daub M, Altbir D, Nielsch K (2008) Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes. Phys Rev B 77:214421–214428CrossRefGoogle Scholar
  24. Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338–358CrossRefGoogle Scholar
  25. Florian M, Joachim B, Shafqat K, Maria Eugenia Toimil M, Christina T, Hartmut F (2007) Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology 18:135709–135716CrossRefGoogle Scholar
  26. Forster H, Schrefl T, Dittrich R, Suess D, Scholz W, Tsiantos V, Fidler J, Nielsch K, Hofmeister H, Kronmuller H, Fischer S (2002) Magnetization reversal in granular nanowires. IEEE Trans Magn 38:2580–2582CrossRefGoogle Scholar
  27. Fu J, Cherevko S, Chung C-H (2008) Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate. Electrochem Commun 10:514–518CrossRefGoogle Scholar
  28. Gao TR, Yin LF, Tian CS, Lu M, Sang H, Zhou SM (2006) Magnetic properties of Co–Pt alloy nanowire arrays in anodic alumina templates. J Magn Magn Mater 300:471–478CrossRefGoogle Scholar
  29. Harp GR, Weller D, Rabedeau TA, Farrow RFC, Toney MF (1993) Magneto-optical Kerr spectroscopy of a new chemically ordered alloy: Co3Pt. Phys Rev Lett 71:2493–2496CrossRefGoogle Scholar
  30. Hassel C, Brands M, Lo FY, Wieck AD, Dumpich G (2006) Resistance of a single domain wall in (Co/Pt)7 multilayer nanowires. Phys Rev Lett 97:226805–226810CrossRefGoogle Scholar
  31. Henry Y, Ounadjela K, Piraus L, Dubois S, George J-M, Duvail J-L (2001) Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. EPJ B 20:35–44CrossRefGoogle Scholar
  32. Irshad MI, Ahmad F, Mohamed NM (2012) A review on nanowires as an alternative high density magnetic storage media. AIP Conf Proc 1482:625–632CrossRefGoogle Scholar
  33. Ivanov YP, Vivas LG, Asenjo A, Chuvilin A, Chubykalo-fesenko O, Vázquez M (2013a) Magnetic structure of a single-crystal hcp electrodeposited cobalt nanowire. Europhys Lett 102:17009–17014CrossRefGoogle Scholar
  34. Ivanov YP, Vázquez M, Chubykalo-Fesenko O (2013b) Magnetic reversal modes in cylindrical nanowires. J Phys D Appl Phys 46:485001–485012Google Scholar
  35. Kartopu G, Yalc O, Choy KL, Topkaya R, Kazan S, Akta B (2011) Size effects and origin of easy-axis in nickel nanowire arrays. J Appl Phys 109:033909-033901CrossRefGoogle Scholar
  36. Khurshid H, Huang YH, Bonder MJ, Hadjipanayis GC (2009) Microstructural and magnetic properties of CoPt nanowires. J Magn Magn Mater 321:277–280CrossRefGoogle Scholar
  37. Kostevšek N, Rožman KŽ, Pečko D, Pihlar B, Kobe S (2014) A comparative study of the electrochemical deposition kinetics of iron-palladium alloys on a flat electrode and in a porous alumina template. Electrochim Acta 125:320–329CrossRefGoogle Scholar
  38. Kronmuller H, Fahnle M (2003) Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, CambridgeGoogle Scholar
  39. Landeros P, Allende S, Escrig J, Salcedo E, Altbir D, Vogel EE (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90:102501–102503CrossRefGoogle Scholar
  40. Lavin R, Denardin JC, Escrig J, Altbir D (2009a) Angular dependence of magnetic properties in Ni nanowire arrays. J Appl Phys 106:103903–103901–103903–103905CrossRefGoogle Scholar
  41. Lavin R, Denardin JC, Escrig J, Altbir D, Cortes A, Gomez H (2009b) Angular dependence of magnetic properties in Ni nanowire arrays. J Appl Phys 106:103903–103905CrossRefGoogle Scholar
  42. Lavin R, Denardin JC, Espejo AP, Cortes A, and Gomez H (2010) Magnetic properties of arrays of nanowires: anisotropy, interactions, and reversal modes. J Appl Phys 107:09B504-509B507Google Scholar
  43. Lavín R, Gallardo C, Palma JL, Escrig J, Denardin JC (2012) Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires. J Magn Magn Mater 324:2360–2362CrossRefGoogle Scholar
  44. Lebecki KM, Donahue MJ (2010) Comment on “Frustrated magnetization in Co nanowires: competition between crystal anisotropy and demagnetization energy”. Phys Rev B 82:096401–096405CrossRefGoogle Scholar
  45. Li F, Wang T, Ren L, Sun J (2004) Structure and magnetic properties of Co nanowires in self-assembled arrays. J Phys: Condens Matter 16:8053–8060Google Scholar
  46. Liu Z, Chang P-C, Chang C-C, Galaktionov E, Bergmann G, Lu JG (2008) Shape anisotropy and magnetization modulation in hexagonal cobalt nanowires. Adv Funct Mater 18:1573–1578CrossRefGoogle Scholar
  47. Mallet J, Yu-Zhang K, Chien C-L, Eagleton TS, Searson PC (2004) Fabrication and magnetic properties of fcc CoxPt1−x nanowires. Appl Phys Lett 84:3900–3902CrossRefGoogle Scholar
  48. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966CrossRefGoogle Scholar
  49. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRefGoogle Scholar
  50. Mitchell DRG (2008) DiffTools: electron diffraction software tools for DigitalMicrograph™. Microsc Res Tech 71:588–593CrossRefGoogle Scholar
  51. Motoyama M, Fukunaka Y, Sakka T, Ogata YH (2007) Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim Acta 53:205–212CrossRefGoogle Scholar
  52. Netzelmann U (1990) Ferromagnetic resonance of particulate magnetic recording tapes. J Appl Phys 68:1800–1808CrossRefGoogle Scholar
  53. Neumann RF, Bahiana M, Vargas NM, Altbir D, Allende S, Gorlitz D, Nielsch K (2013) Domain wall control in wire-tube nanoelements. Appl Phys Lett 102:202407–202412CrossRefGoogle Scholar
  54. Ning G, Hongjun W, Eui-Hyeok Y (2010) An experimental study on ferromagnetic nickel nanowires functionalized with antibodies for cell separation. Nanotechnology 21:105107–105115CrossRefGoogle Scholar
  55. Ohtake M, Suzuki D, Kirino F, Futamoto M (2013) Metastable ordered phase formation in CoPt and Co3Pt alloy thin films epitaxially grown on single-crystal substrates. IEICE T Electron E96-C:1460–1468Google Scholar
  56. Pan H, Liu B, Yi J, Poh C, Lim S, Ding J, Feng Y, Huan CHA, Lin J (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109:3094–3098CrossRefGoogle Scholar
  57. Raposo V, Garcia JM, González JM, Vázquez M (2000) Long-range magnetostatic interactions in arrays of nanowires. J Magn Magn Mater 222:227–232CrossRefGoogle Scholar
  58. Razee SSA, Staunton JB, Pinski FJ (1997) First-principles theory of magnetocrystalline anisotropy of disordered alloys: application to cobalt platinum. Phys Rev B 56:8082–8090CrossRefGoogle Scholar
  59. Razee SSA, Staunton JB, Ginatempo B, Bruno E, Pinski FJ (2001) Ab initio theoretical description of the dependence of magnetocrystalline anisotropy on both compositional order and lattice distortion in transition metal alloys. Phys Rev B 64:014411–014415CrossRefGoogle Scholar
  60. Rosa WO, Vivas LG, Pirota KR, Asenjo A, Vázquez M (2012) Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays. J Magn Magn Mater 324:3679–3682CrossRefGoogle Scholar
  61. Rožman KŽ, Šturm S, McGuiness PJ, Kobe S (2009) Hard magnetic Co-Pt-based nanotubes produced via direct electroplating. IEEE Trans Magn 45:4413–4416CrossRefGoogle Scholar
  62. Salazar-Aravena D, Corona RM, Goerlitz D, Nielsch K, Escrig J (2013) Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments. J Magn Magn Mater 346:171–174CrossRefGoogle Scholar
  63. Sayama J, Shimatsu T, Nemoto H, Okamoto S, Kitakami O, Aoi H (2011) Temperature dependence of the magnetic properties of L11-type Co–Ni–Pt ordered alloy films for thermally assisted recording media. J Appl Phys 110:013918–013923CrossRefGoogle Scholar
  64. Schlörb H, Haehnel V, Khatri MS, Srivastav A, Kumar A, Schultz L, Fähler S (2010) Magnetic nanowires by electrodeposition within templates. Phys Status Solidi B 247:2364–2379CrossRefGoogle Scholar
  65. Shamaila S, Sharif R, Riaz S, Ma M, Khaleeq-ur-Rahman M, Han XF (2008) Magnetic and magnetization properties of electrodeposited fcc CoPt nanowire arrays. J Magn Magn Mater 320:1803–1809CrossRefGoogle Scholar
  66. Sorop T, Untiedt C, Luis F, Kröll M, Raşa M, de Jongh L (2003) Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy. Phys Rev B 67:1–8CrossRefGoogle Scholar
  67. Sorop TG, Nielsch K, Göring P, Kröll M, Blau W, Wehrspohn RB, Gösele U, De Jongh LJ (2004) Study of the magnetic hysteresis in arrays of ferromagnetic Fe nanowires as a function of the template filling fraction. J Magn Magn Mater 272–276:1656–1657CrossRefGoogle Scholar
  68. Stoleriu L, Pinzaru C, Stancu A (2012) Micromagnetic analysis of switching and domain structure in amorphous metallic nanowires. Appl Phys Lett 100:122404–122408CrossRefGoogle Scholar
  69. Sun L, Hao Y, Chien CL, Searson aPC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:79–102CrossRefGoogle Scholar
  70. Tian ML, Wang JU, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923CrossRefGoogle Scholar
  71. Vázquez M, Pirota K, Torrejón J, Navas D, Hernández-Vélez M (2005) Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics. J Magn Magn Mater 294:174–181CrossRefGoogle Scholar
  72. Vega V, Böhnert T, Martens S, Waleczek M, Montero-Moreno JM, Görlitz D, Prida VM, Nielsch K (2012) Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 23:465709-465709Google Scholar
  73. Vivas LG, Escrig J, Trabada DG, Badini-Confalonieri GA, Vázquez M (2012a) Magnetic anisotropy in ordered textured Co nanowires. Appl Phys Lett 100:252405–252409CrossRefGoogle Scholar
  74. Vivas LG, Vazquez M, Escrig J, Allende S, Altbir D, Leitao DC, Araujo JP (2012b) Magnetic anisotropy in CoNi nanowire arrays: analytical calculations and experiments. Phys Rev B 85:035439–035443CrossRefGoogle Scholar
  75. Wang N, Zhang J, Wang C, Shen TH (2010) A study on phase relations and texture of Co1−xPtx (0.09<x<0.86) nanowire arrays. Mater Lett 64:2530–2533CrossRefGoogle Scholar
  76. Xianghua H, Qingfang L, Jianbo W, Shiliang L, Yong R, Ronglin L, Fashen L (2009) Influence of crystal orientation on magnetic properties of hcp Co nanowire arrays. J Phys D Appl Phys 42:095005–095009CrossRefGoogle Scholar
  77. Yang S, Zhu H, Yu D, Jin Z, Tang S, Du Y (2000) Preparation and magnetic property of Fe nanowire array. J Magn Magn Mater 222:97–100CrossRefGoogle Scholar
  78. Zana I, Zangari G, Park J-W, Allen MG (2004) Electrodeposited Co–Pt micron-size magnets with strong perpendicular magnetic anisotropy for MEMS applications. J Magn Magn Mater 272–276:E1775–E1776CrossRefGoogle Scholar
  79. Zhang J, Li W, Jones GA, Shen TH (2006) Composition-dependent structural and magnetic properties of Co1−xPtx (0.09 <= x <= 0.86) nanowire arrays. J Appl Phys 99:08Q502–08Q503Google Scholar
  80. Zhang J, Jones GA, Shen TH, Donnelly SE, Li G (2007) Monocrystalline hexagonal-close-packed and polycrystalline face-centered-cubic Co nanowire arrays fabricated by pulse dc electrodeposition. J Appl Phys 101:054310–054315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Muhammad Shahid Arshad
    • 1
    • 2
  • Sašo Šturm
    • 1
  • Janez Zavašnik
    • 1
  • Alvaro P. Espejo
    • 3
  • Juan Escrig
    • 3
  • Matej Komelj
    • 1
  • Paul J. McGuiness
    • 1
  • Spomenka Kobe
    • 1
    • 2
    • 4
  • Kristina Žužek Rožman
    • 1
  1. 1.Department for Nanostructured Materials K7Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Departamento de Física, Center for the Development of Nanoscience and Nanotechnology (CEDENNA)Universidad de Santiago de Chile (USACH)SantiagoChile
  4. 4.Center of Excellence on Nanoscience and Nanotechnology (CENN Nanocenter)LjubljanaSlovenia

Personalised recommendations