Skip to main content
Log in

A naked eye aggregation assay for Pb2+ detection based on glutathione-coated gold nanostars

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Gold nanostars (AuNS) with a mean hydrodynamic size of 40 nm, obtained with a seed-growth approach using a zwitterionic surfactant (laurylsulfobetaine, LSB), were successfully coated with glutathione (GSH), obtaining a stable and purified solid product which can be easily stored and re-dissolved on need in 0.1 M aqueous solution of Hepes buffered at pH 7. Upon exposure to micromolar concentrations of Pb2+ cation, the GSH-coated nano-objects undergo a fast aggregation followed by sedimentation leading to complete precipitation in about an hour. The subsequent disappearing of the intense LSPR extinction can of course be followed spectrophotometrically but, most importantly, can be easily detected with the naked eye. No signs of this event are noticed when other divalent cations are added to the colloidal suspension in the same condition. A careful investigation was performed to study this selectivity and the behaviour of aggregation as a function of time and Pb2+ cation concentration. We demonstrate that an easy, rapid, instrument-free, visual detection of micromolar levels of Pb2+ is thus possible with this assay, showing a good selectivity towards other investigated metal cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amato E, Diaz-Fernandez YA, Taglietti A, Pallavicini P, Pasotti L, Cucca L, Milanese C, Grisoli P, Dacarro C, Fernandez-Hechavarria JM et al (2011) Synthesis, characterization and antibacterial activity against gram positive and gram negative bacteria of biomimetically coated silver nanoparticles. Langmuir 27(15):9165–9173

    Article  Google Scholar 

  • Arduini A, Demuru D, Pochini A, Secchi A (2005) Recognition of quaternary ammonium cations by calix 4 arene derivatives supported on gold nanoparticles. Chem Commun 5:645–647

    Article  Google Scholar 

  • Beqa L, Singh AK, Khan SA, Senapati D, Arumugam SR, Ray PC (2011) Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. Acs Appl Mater Interfaces 3(3):668–673

    Article  Google Scholar 

  • Casu A, Cabrini E, Dona A, Falqui A, Diaz-Fernandez Y, Milanese C, Taglietti A, Pallavicini P (2012) Controlled synthesis of gold nanostars by using a Zwitterionic surfactant. Chem A Eur J 18(30):9381–9390

    Article  Google Scholar 

  • Cavallaro G, Triolo D, Licciardi M, Giammona G, Chirico G, Sironi L, Dacarro G, Dona A, Milanese C, Pallavicini P (2013) Amphiphilic copolymers based on poly (hydroxyethyl)-D, L-aspartamide : a suitable functional coating for biocompatible gold nanostars. Biomacromolecules 14(12):4260–4270

    Article  Google Scholar 

  • Chai F, Wang CA, Wang TT, Li L, Su ZM (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. Acs Appl Mater Interfaces 2(5):1466–1470

    Article  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  Google Scholar 

  • Durgadas CV, Lakshmi VN, Sharma CP, Sreenivasan K (2011) Sensing of lead ions using glutathione mediated end to end assembled gold nanorod chains. Sens Actuators B Chem 156(2):791–797

    Article  Google Scholar 

  • Edwards M, Triantafyllidou S, Best D (2009) Elevated blood lead in young children due to lead-contaminated drinking water: Washington, DC, 2001–2004. Environ Sci Technol 43(5):1618–1623

    Article  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    Article  Google Scholar 

  • Fabbrizzi L, Pallavicini P, Parodi L, Perotti A, Taglietti A (1995) Molecular recognition of the imidazolo residue by a dicopper(II) complex with a bisdien macrocycle bearing 2 pendant arms. J Chem Soc Chem Commun 23:2439–2440

    Article  Google Scholar 

  • Fabbrizzi L, Licchelli M, Rabaioli G, Taglietti A (2000) The design of luminescent sensors for anions and ionisable analytes. Coord Chem Rev 205:85–108

    Article  Google Scholar 

  • Fu R, Li J, Yang W (2012) Aggregation of glutathione-functionalized Au nanoparticles induced by Ni2+ ions. J Nanopart Res 14:929

    Article  Google Scholar 

  • Guan J, Jiang L, Li J, Yang W (2008) pH-dependent aggregation of histidine-functionalized Au nanoparticles induced by Fe3+ ions. J of Phys Chem C 112(9):3267–3271

  • Guidotti TL, Calhoun T, Davies-Cole JO, Knuckles ME, Stokes L, Glymph C, Lum G, Moses, Goldsmith DF, Ragain L (2009) Elevated lead in drinking water in Washington, DC, 2003-2004: The public health response (vol 115, pg 695, 2007). Environ Health Perspect 117(8):A342–A342

    Google Scholar 

  • Hutter E, Pileni MP (2003) Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B 107(27):6497–6499

    Article  Google Scholar 

  • Kim YJ, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1(4):165–167

    Article  Google Scholar 

  • Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Edition 46(22):4093–4096

    Article  Google Scholar 

  • Li H, Cui Z, Han C (2009) Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni(2 +) ion. Sens Actuators B Chem 143(1):87–92

    Article  Google Scholar 

  • Li JL, Chen LX, Lou TT, Wang YQ (2011) Highly sensitive SERS detection of As3 + ions in aqueous media using glutathione functionalized silver nanoparticles. Acs Appl Mater Interfaces 3(10):3936–3941

    Article  Google Scholar 

  • Liu C-W, Huang C-C, Chang H-T (2008) Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Langmuir 24(15):8346–8350

    Article  Google Scholar 

  • Marcotte N, Taglietti A (2003) Transition-metal-based chemosensing ensembles: ATP sensing in physiological conditions. Supramol Chem 15(7–8):617–625

    Article  Google Scholar 

  • Pallavicini P, Chirico G, Collini M, Dacarro G, Dona A, D’Alfonso L, Falqui A, Diaz-Fernandez Y, Freddi S, Garofalo B et al (2011) Synthesis of branched Au nanoparticles with tunable near-infrared LSPR using a zwitterionic surfactant. Chem Commun 47(4):1315–1317

    Article  Google Scholar 

  • Plascencia-Villa G, Bahena D, Rodriguez AR, Ponce A, Jose-Yacaman M (2013) Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages. Metallomics 5(3):242–250

    Article  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  Google Scholar 

  • Sokolowska M, Bal W (2005) Cu(II) complexation by “non-coordinating” N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (Hepes buffer). J Inorg Biochem 99(8):1653–1660

    Article  Google Scholar 

  • Sung HK, Oh SY, Park C, Kim Y (2013) Colorimetric detection of Co2+ ion using silver nanoparticles with spherical, plate, and rod shapes. Langmuir 29(28):8978–8982

    Article  Google Scholar 

  • Taglietti A, Fernandez YAD, Cucca L, Dacarro G, Grisoli P, Necchi V, Pallavicini P, Pasotti L, Patrini M (2012) Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir 28:8140–8148

    Article  Google Scholar 

  • Taglietti A, Fernandez YAD, Galinetto P, Grisoli P, Milanese C, Pallavicini P (2013) Mixing thiols on the surface of silver nanoparticles: preserving antibacterial properties while introducing SERS activity. J Nanoparticle Res 15(11):1–13

    Article  Google Scholar 

  • Tokareva I, Minko S, Fendler JH, Hutter E (2004) Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Am Chem Soc 126(49):15950–15951

    Article  Google Scholar 

  • Yang WR, Gooding JJ, He ZC, Li Q, Chen GN (2007) Fast colorimetric detection of copper ions using l-cysteine functionalized gold nanoparticles. J Nanosci Nanotechnol 7(2):712–716

    Google Scholar 

Download references

Acknowledgments

Funding had been granted by Fondazione Cariplo (Bandi Ricerca Scientifica e Tecnologica sui Materiali Avanzati, 2010-0454), the Ministero dell’Istruzione, Università e Ricerca (MIUR). Authors also want to thank Vittorio Necchi and Centro Grandi Strumenti, for TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Taglietti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Agostino, A., Taglietti, A., Bassi, B. et al. A naked eye aggregation assay for Pb2+ detection based on glutathione-coated gold nanostars. J Nanopart Res 16, 2683 (2014). https://doi.org/10.1007/s11051-014-2683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2683-9

Keywords

Navigation