Skip to main content

Free nanoparticle characterization by optical scattered field analysis: opportunities and perspectives

Abstract

Methods for the facile and in-line characterization of size distribution and physical properties of unsupported nanoparticles are of paramount importance for fundamental research and industrial applications. The state-of-the-art free nanoparticle characterization methods do not provide accuracy, high throughput, and operation easiness to support widespread use for routine characterization. In this perspective paper, we describe and discuss the opportunities provided by approaches for nanoparticle characterization based on optical measurements of the field scattered by particles. In particular, we show how insightful is the measure of both the real and the imaginary parts of the field amplitude, a task that has been considered in the past but never had a widespread exploitation. A number of opportunities are generated by this approach, in view of assessing a more efficient characterization and a better understanding of the properties of nanoparticles. We focus our attention on the capability of characterizing nanoparticles of wide interest for applications, considering cases where traditional approaches are not currently effective. Possible exploitations are both in research and in industrial environments: to validate a synthetic process, for example, or for in-line monitoring of a production plant to generate advanced process control tools, as well as decision-making tools for acting in real time during the production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Albani S et al (2014) Improved dust representation in the community atmosphere model. J Adv Model Earth Syst, accepted

  • Aragon SR, Pecora BJ (1976) Theory of dynamic light scattering from polydisperse systems. J Chem Phys 64:2395–2404

    Article  Google Scholar 

  • Ball RC, Weitz DA, Witten TA, Leyvraz F (1987) Universal kinetics in reaction-limited aggregation. Phys Rev Lett 58:274

  • Bantle S, Schmidt M, Burchard W (1982) Simultaneous static and dynamic light scattering. Macromolecules 15:1604–1609

    Article  Google Scholar 

  • Bassini A et al (1992) Optical particle sizer based on the Chahine inversion algorithm. Opt Eng 31:1112–1117

    Article  Google Scholar 

  • Bassini A et al (1997) Interferometric system for precise submicrometer particle sizing. Appl Opt 31:8121–8127

    Article  Google Scholar 

  • Batchelder JS, Taubenblatt MA (1989) Interferometric detection of forward scattered light from small particles. Appl Phys Lett 55:215–217

  • Batchelder JS, Taubenblatt MA (1990) Measurement of size and refractive index of particles using the complex forward-scattered electromagnetic field. US Patent 547735

  • Batchelder JS, Taubenblatt MA (1991) Measurement of the size and refractive index of a small particle using the complex forward-scattered electromagnetic field. Appl Opt 30:4972–4979

    Article  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering. Dover, New York

  • Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley-VCH, Berlin

    Book  Google Scholar 

  • Borghese F, Denti P, Saija R (2003) Scattering from model nonspherical particles. Springer, Berlin

    Book  Google Scholar 

  • Brogioli D, Vailati A, Giglio M (2002) Heterodyne near field scattering. Appl Phys Lett 81:4109–4112

  • Chylek P, Grams GW, Pinninck RG (1976) Light scattering by irregular randomly oriented particles. Science 193:480–482

    Article  Google Scholar 

  • Cornillault J (1972) Particle size analyzer. Appl Opt 11:265–268

    Article  Google Scholar 

  • De Temmerman P-J, Van Doren E, Verleysen E, Van der Stede Y, Francisco MAD, Mast J (2012) Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy. J Nanobiotech 10:24

    Article  Google Scholar 

  • Delmonte B et al (2005) Ice core evidence for secular variability and 200-year dipolar oscillations in atmospheric circulation over East Antarctica during the Holocene. Clim Dyn 24:641–655

    Article  Google Scholar 

  • Eidhammer T (2008) Determination of index of refraction and size of supermicrometer particles from light scattering measurements at two angles. J Geoph Res 113:D16206

    Article  Google Scholar 

  • Ferri F et al (1988) Low-angle elastic light scattering study of diffusion-limited aggregation. Europhys Lett 7:599–604

    Article  Google Scholar 

  • Frisken B (2001) Revisiting the cumulant method for the analysis of dynamic light scattering data. Appl Opt 40:4087–4091

    Article  Google Scholar 

  • Gebhart J (1991) Response of single-particle optical counters to particles of irregular shape. Part Part Syst Charact 8(1991):40–47

    Article  Google Scholar 

  • Ghosal S, Weber PK, Laskin A (2014) Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insights into particle origin and chemistry. Anal Methods 6:2413–2792

    Article  Google Scholar 

  • Giglio M, Carpineti M, Vailati A (2000)  Space intensity correlations in the near field of the scattered light: a direct measurement of the density correlation function g(r). Phys Rev Lett 85:1416–1419

  • Giglio M, Potenza MAC (2004) A method for measuring properties of particles by means of interference fringe analysis and corresponding apparatus. Patent IT TO20040100; PCT/IB2005/000411

  • Giglio M, Potenza MAC (2005) Process for measuring properties of particles and corresponding apparatus. Patent PCT/IT2005/000362

  • Goldburg WI (1999) Dynamic light scattering. Am J Phys 67:1152–1160

    Article  Google Scholar 

  • Goodman JJ (1996) Introduction to fourier optics. McGraw-Hill, New York

    Google Scholar 

  • Gravatt CC (1971) The applications of light scattering. Appl Spectrosc 25:509–516

    Article  Google Scholar 

  • Hansen JE, Lacis AA (1990) Sun and dust versus greenhouse gases: an assessment of their relative roles. Nature 346:712–719

    Article  Google Scholar 

  • Harvey LDD (1988) Climatic impact of ice-age aerosols. Nature 334:333–334

    Article  Google Scholar 

  • Heim M et al (2008) Performance evaluation of three optical counters with an efficient “multimodal” calibration method. Aerosol Sci 39:1019–1031

    Article  Google Scholar 

  • Hoekstra AG, Sloot PMA (1994) New computational techniques to simulate light-scattering from arbitrary particles. Part Syst Charact 11:189–193

    Article  Google Scholar 

  • Hoekstra AG, Grimminck MD, Sloot PMA (1998) Large scale simulations of elastic light scattering by a fast discrete dipole approximation. Int J Mod Phys C 9:87–102

    Article  Google Scholar 

  • Hoekstra AG et al (2001) Radiation forces in the discrete-dipole approximation. J Opt Soc Am 18:1944–1953

    Article  Google Scholar 

  • Hole P et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanoparticle Res 15:2101–2113

    Article  Google Scholar 

  • Iida K, Stolzenburg MR, McMurry PH (2009) Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci Technol 43:81–96

    Article  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life-cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  • Lattuada M, Wu H, Morbidelli M (2004) Rotational diffusivity of fractal clusters. Langmuir 2004(20):5630–5636

    Article  Google Scholar 

  • Lin MY et al (1989a) Universality in colloidal aggregation. Nature (London) 339:360–362

    Article  Google Scholar 

  • Lin MY, Lindsay HM, Weitz DA, Klein R, Ball RC, Meakin P (1989b) Universality of fractal aggregates probed by light scattering. Proc R Soc Lond A 423:71–87

    Article  Google Scholar 

  • Lin MY, Lindsay HM, Weitz DA, Klein R, Ball RC, Meakin P (1990) Universal reaction limited colloid aggregation. Phys Rev A 41:2005–2020

    Article  Google Scholar 

  • Liu Y, Daum PH (2000) The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J Aerosol Sci 31:945–957

    Article  Google Scholar 

  • Locatelli E et al (2012) Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-Based micelles for the treatment of glioblastoma. Adv Healthcare Mater 1:342–347

    Article  Google Scholar 

  • Mahowald N et al (2013) The size distribution of desert dust aerosols and its impact on the Earth system. In press on Aeolian Reaserch

  • Mazzoni S et al (2013) SODI-COLLOID: a combination of static and dynamic light scattering on board the International Space Station. Rev Sci Instrum 84:043704

  • Meakin P (1983) Diffusion-controlled cluster formation in 2–6 dimensional space. Phys Rev A 27:1495–1507

    Article  Google Scholar 

  • Mishchenko MI, Hovenier JW, Travis LD (eds) (1999) Light scattering by nonspherical particles: theory, measurements, and applications. Academic, San Diego

    Google Scholar 

  • Munoz O et al (2004) Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes. J Geophys Res 109:D16201

    Article  Google Scholar 

  • Murr LE, Garza KM (2009) Natural and anthropogenic environmental nanoparticulates: their microstructural characterization and respiratory health implications. Atmos Environ 43:2683–2692

    Article  Google Scholar 

  • Oerlemans C et al (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589

    Article  Google Scholar 

  • Palik ED (1985) Handbook of optical constants of solids. Academic Press, Boston

    Google Scholar 

  • Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Yeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  • Penttila A et al (2007) Comparison between discrete dipole implementations and exact techniques. JQSRT 106:417–436

    Article  Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    Article  Google Scholar 

  • Potenza MAC et al (2010) How to measure the optical thickness of scattering particles from the phase delay of scattered waves: application to turbid samples. Phys Rev Lett 105:193901

    Article  Google Scholar 

  • Potenza MAC et al (2014) Dynamics of colloidal aggregates by critical Casimir forces. Eur Phys Lett 106:68005

    Article  Google Scholar 

  • Pranami G, Lamm MH, Vigil RD (2010) Molecular dynamics simulation of fractal aggregates diffusion. Phys Rev E 82:051402

    Article  Google Scholar 

  • Pratsinis SE (2010) Aerosol-based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering”. AIChE J 56:3028–3035

    Article  Google Scholar 

  • Purcell EM, Pennypacker CR (1973) Scattering and adsorption of light by nonspherical dielectric grains. Astrophys J 186:705–714

    Article  Google Scholar 

  • Ramanathan V (1987) The role of Earth radiation budget studies in climate and general circulation research. J Geophys Res 92:4075–4095

    Article  Google Scholar 

  • Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13:897–919

    Article  Google Scholar 

  • Royer A, De Angelis M, Petit JR (1983) A 30000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models. Clim Chang 5:381–412

    Article  Google Scholar 

  • Sachweh B et al (1998) Performance evaluation of three optical counters with an efficient “multimodal” calibration method. Aerosol Sci 29:1075–1086

    Article  Google Scholar 

  • Scheckman J, McMurry PH, Pratsinis SE (2009) Rapid characterization of agglomerate aerosols by in situ mass mobility measurements. Langmuir 25:8248–8254

    Article  Google Scholar 

  • Schwartz SE (1989) Sulphate aerosols and climate. Nature 340:515–516

    Article  Google Scholar 

  • Schwartz SE, Charlson RJ, Kahn RA, Ogren JA, Rodhe H (2010) Why hasn’t Earth warmed as much as expected? J Clim 23:2453–2464

    Article  Google Scholar 

  • Silva AKA et al (2013) Magnetic and photoresponsive theranosomes: translating cell-released vesicles into smart nanovectors for cancer therapy. ACS Nano 7:4954–4966

    Article  Google Scholar 

  • Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133

    Article  Google Scholar 

  • Tamborini E, Cipelletti L (2012) Multiangle static and dynamic light scattering in the intermediate scattering angle range. Rev Sci Instrum 83:093106

    Article  Google Scholar 

  • Tinke AP et al (2008) Particle shape and orientation in laser diffraction and static image analysis size distribution analysis of micrometer sized rectangular particles. Powder Technol 186:154–167

    Article  Google Scholar 

  • Van de Hulst HC (1957) Light scattering by small particles. Dover, New York

  • Van Saarlos W (1987) On the hydrodynamic radius of fractal aggregates. Physica 147A:280–296

    Article  Google Scholar 

  • Veen SJ et al (2012) Colloidal aggregation in microgravity by critical Casimir forces. PRL 109:248302

    Article  Google Scholar 

  • Wang GM, Sorensen CM (1999) Diffusive mobility of fractal aggregates over the entire Knudsen number range. Phys Rev E 60:3036–3044

    Article  Google Scholar 

  • Weitz DA et al (1985) Limits of the fractal dimension of the irreversible kinetic aggregation of gold colloids. Phys Rev Lett 54:1416–1419

    Article  Google Scholar 

  • Wiltzius P (1987) Hydrodynamic behavior of fractal aggregates. Phys Rev Lett 58:710–713

    Article  Google Scholar 

  • Wiltzius P, Saarlos W (1987) Reply to a comment. Phys Rev Lett 59:2123–2126

    Article  Google Scholar 

  • Witten TA, Sander LM (1983) Diffusion limited aggregation. Phys Rev B 27:5686–5697

    Article  Google Scholar 

  • Wyatt P (1993) Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 272:1–40

    Article  Google Scholar 

  • Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. JQSRT 106:558–589

    Article  Google Scholar 

  • Yurkin MA, Hoekstra AG (2011) The discrete-dipole-approximation code ADDA: capabilities and known limitations. JQSRT 112:2234–2247

    Article  Google Scholar 

  • Yurkin MA, Maltsev VP, Hoekstra AG (2007) The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength. JQSRT 106:546–557

    Article  Google Scholar 

  • Zelenyuk A, Cai L, Imre D (2006) From agglomerates of spheres to irregularly shaped particles: determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Sci Technol 40:197–217

    Article  Google Scholar 

  • Zhang R, Khalizov A, Wang L, Hu M, Xu W (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112:1957–2011

    Article  Google Scholar 

  • Zimm BH (1948a) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1093

    Article  Google Scholar 

  • Zimm BH (1948b) Apparatus and methods for measurement and interpretation of the angular variation of light scattering; Preliminary results on polystyrene solutions. J Chem Phys 16:1099–1116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Potenza.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potenza, M., Milani, P. Free nanoparticle characterization by optical scattered field analysis: opportunities and perspectives. J Nanopart Res 16, 2680 (2014). https://doi.org/10.1007/s11051-014-2680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2680-z

Keywords