Advertisement

The modification of structural and optical properties of nano- and submicron ZnO powders by variation of solvothermal syntheses conditions

  • D. Luković Golić
  • J. Ćirković
  • M. Šćepanović
  • T. Srećković
  • E. Longo
  • J. A. Varela
  • N. Daneu
  • V. Stamenković
  • G. Branković
  • Z. Branković
Research Paper

Abstract

Nano- (30–60 nm) and submicron (100–350 nm) ZnO particles were synthesized using solvothermal method at 200 °C from an ethanolic solution of zinc acetate dihydrate, applying different reaction conditions, i.e., pH value of precursor and time of the reaction. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance (DR), Raman spectroscopy, and photoluminescence (PL) spectroscopy have been employed for characterization of synthesized ZnO powders. It was shown that the structural, morphological, and optical properties are largely determined by reaction conditions during solvothermal synthesis. The particle crystallinity improves with the decrease of pH value and/or the increase of time of the reaction. The Raman and PL spectra analyses indicate that the oxygen interstitials are dominant intrinsic defects in solvothermally synthesized ZnO powders. It was observed that concentration of defects in wurtzite ZnO crystal lattices slightly changes with the variation of pH value of the precursor and time of the solvothermal reaction. The correlation between structural ordering and defect structure of particles and corresponding growth processes was discussed.

Keywords

ZnO Nano- and submicron particles Solvothermal synthesis Growth mechanism Structure ordering Photoluminescence 

Notes

Acknowledgments

The authors acknowledge the financial support of the Ministry of Education and Science of Republic of Serbia (project number III45007).

References

  1. Cai JW, Xu JP, Zhang XS, Niu XP, Xing TY, Ji T, Li L (2012) Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient. Optoelectronics Lett 8:4–8CrossRefGoogle Scholar
  2. Cusco R, Alarcon-Llado E, Ibanez J, Artus L, Jimenez J, Wang B, Callahan MJ (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:165202CrossRefGoogle Scholar
  3. Djurišić A, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2:944–961CrossRefGoogle Scholar
  4. Djurišić AB, Leung YH, Tam KH, Ding L, Gem WK, Chen HY, Gwo S (2006) Green, yellow and orange defect emission from ZnO nanostructures: influence of excitation wavelength. Appl Phys Lett 88:103107CrossRefGoogle Scholar
  5. Dutta S, Chattopadhyay S, Sarkar A, Chakrabarti M, Sanyal D, Jana D (2009) Role of defects in tailoring structural, electrical and optical properties of ZnO. Prog Mater Sci 54:89–136CrossRefGoogle Scholar
  6. Garvey RG (1986) LSUCRIPC least-squares unit-cell refinement with indexing on the personal computer. Powder Diffr 1:114–116CrossRefGoogle Scholar
  7. Ghosh S, Khan GG, Varma S, Mandal K (2013) Influence of film thickness and oxygen partial pressure on cation-defect induced intrinsic ferromagnetic behavior in luminescent P-type Na-Doped ZnO thin films. ACS Appl Mater Interfaces 5:2455–2461CrossRefGoogle Scholar
  8. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Low-Temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031–3034CrossRefGoogle Scholar
  9. Jagadish C, Pearton SJ (2006) Zinc Oxide bulk, thin films and nanostructures. Elsevier, New YorkGoogle Scholar
  10. Janotti A, Van de Walle CG (2007) Native point defects in ZnO. Phys Rev B 76:165202CrossRefGoogle Scholar
  11. Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501CrossRefGoogle Scholar
  12. Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013) Synthesis, characterization and optical properties of ZnO nanoparticles. Int Nano Lett 3:30CrossRefGoogle Scholar
  13. Lin KF, Cheng HM, Hsu HC, Lin JL, Hsieh WF (2005) Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem Phys Lett 409:208–211CrossRefGoogle Scholar
  14. Luković Golić D, Branković G, Počuča-Nešić M, Vojisavljević K, Rečnik A, Daneu N, Bernik S, Šćepanović M, Poleti D, Branković Z (2011) Structural characterization of self-assembled ZnO nanoparticles obtained by the sol-gel method from Zn(CH3COO)2·2H2O. Nanotechnology 22:395603CrossRefGoogle Scholar
  15. Luković Golić D, Branković Z, Daneu N, Bernik S, Branković G (2012) Solvothermal syntheses of nano- and micro-sized ZnO powders with a controllable morphology. J Sol-Gel Sci Technol 63:116–125CrossRefGoogle Scholar
  16. Mang A, Reimann K, Rübenacke St (1995) Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure. Solid State Commun 94:251–254CrossRefGoogle Scholar
  17. Mhlongo GH, Motaung DE, Nkosi SS, Swart HC, Malgas GF, Hillie KT, Mwakikunga BW (2014) Temperature-dependence on the structural, optical and paramagnetic properties of ZnO nanostructures. Appl Surf Sci 293:62–70CrossRefGoogle Scholar
  18. Motaung DE, Mhlongo GH, Nkosi SS, Malgas GF, Mwakikunga B, Coetsee E, Swart HC, Abdallah HMI, Moyo T, Ray SS (2014) Shape-selective dependence of room temperature ferromagnetism induced by hierarchical ZnO-nanostructures. ACS Appl Mater Interfaces 6:8981–8995CrossRefGoogle Scholar
  19. Nickel NH, Terukov E (2005) Zinc Oxide—A material for micro- and optoelectronic applications. Springer, NetherlandsCrossRefGoogle Scholar
  20. Panigrahy B, Aslam M, Misra DS, Ghosh M, Bahadur D (2010) Defect-Related emission and magnetization properties of ZnO nanorods. Adv Funct Mater 20:1161–1165CrossRefGoogle Scholar
  21. Roth AP, Webb JB, Williams DF (1982) Band-gap narrowing in heavily defect doped ZnO. Phys Rev B 25:7836–7839CrossRefGoogle Scholar
  22. Šćepanović M, Grujić Brojčin M, Vojisavljević K, Bernik S, Srećković T (2010) Raman study of structural disorder in ZnO nanopowders. J Raman Spectrosc 41:914–921CrossRefGoogle Scholar
  23. Šćepanović M, Grujić Brojčin M, Vojisavljević K, Srećković T (2011) Defect induced variation in vibrational and optoelectronic properties of nanocrystalline ZnO powders. J Appl Phys 109:034313CrossRefGoogle Scholar
  24. Shim ES, Kang HS, Pang SS, Kang JS, Yun I, Lee SY (2003) Annealing effect on the structural and optical properties of ZnO thin film on InP. Mater Sci Eng B-Adv 102:366–369CrossRefGoogle Scholar
  25. Sim AYL, Goh GKL, Tripathy S, Andeen D, Lange FF (2007) Photoluminescence of hydrothermally epitaxied ZnO films. Electrochim Acta 52:2933–2937CrossRefGoogle Scholar
  26. Spanhel L, Anderson M (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J Am Chem Soc 113:2826–2833CrossRefGoogle Scholar
  27. Studenikin SA, Golego N, Cocivera M (1998) Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolisis. J Appl Phys 84:2287CrossRefGoogle Scholar
  28. Wang HQ, Wang GZ, Jia LC, Tang CJ, Li GH (2007) Polychromatic visible photoluminescence in porous ZnO nanotubes. J Phys D Appl Phys 40:6549–6553CrossRefGoogle Scholar
  29. Wood DL, Tauc J (1972) Weak absorption tails in amorphous semiconductors. Phys Rev B 5:3144–3151CrossRefGoogle Scholar
  30. Wu L, Wu Y, Pan X, Kong F (2006) Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property. Opt Mater 28:418–422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • D. Luković Golić
    • 1
  • J. Ćirković
    • 1
  • M. Šćepanović
    • 2
  • T. Srećković
    • 1
  • E. Longo
    • 3
  • J. A. Varela
    • 3
  • N. Daneu
    • 4
  • V. Stamenković
    • 5
  • G. Branković
    • 1
  • Z. Branković
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Center for Solid State Physics and New Materials, Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  3. 3.Departamento de Fisico-Quimica-IQUniversidade Estadual PaulistaAraraquaraBrazil
  4. 4.Jožef Štefan InstituteLjubljanaSlovenia
  5. 5.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations