Skip to main content
Log in

Ultrasmall particles in the catalysis

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Synthesis, stabilization, and applications in the catalytic processes of ultrasmall particles (UPs, from subnanometer up to 10 nm size) and their composites are reviewed. The UPs-driven processes of carbon monoxide, methanol and glycose oxidation, electro-oxidation and electrochemical conversion reactions, decomposition and reduction of organic and inorganic compounds, water splitting, catalysis in fuel cells, CO insertion, C–C coupling, hydrogenation, and cyclization reactions are discussed. Special attention is paid to the preparation techniques of UPs with different sizes by varying reaction conditions and dependence of catalytic process yields or temperature on the UPs size, supporting media, and surface characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Ali Soomro R, Tufail Hussain Sherazi S, Sirajuddin, Memon N, Raza Shah M, Hussain Kalwar N, Richard Hallam K, Shah A (2014) Synthesis of air stable copper nanoparticles and their use in catalysis. Adv Mat Lett 5(4):191–198

    Google Scholar 

  • Applegate JR, Pearlman H, Bakrania SD (2012) Catalysis of methanol-air mixture using platinum nanoparticles for microscale combustion. J Nanomat, Article ID 460790, pp 8

  • Astruc D, Lu F, Ruiz Aranzaes J (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  Google Scholar 

  • Beyersdorff TF, Stiemke FM, Schubert TJS (2012) Ionic liquids as novel dispersing agents for nanoparticles: synthesis and stabilization of nanomaterials—safe-to-handle dispersions. In: Laudon M, Romanowicz B (ds) Nanotechnology conference and expo 2012: an interdisciplinary integrative forum on nanotechnology, microtechnology, biotechnology and cleantechnology, vol 3, Santa Clara, pp 595–598. June 18–21, 2012

  • Biradar AV, Biradar AA, Asefa T (2011) Silica-dendrimer core–shell microspheres with encapsulated ultrasmall palladium nanoparticles: efficient and easily recyclable heterogeneous nanocatalysts. Langmuir 27:14408–14418

    Article  Google Scholar 

  • Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325

    Article  Google Scholar 

  • Chen G, Desinan S, Rosei R, Rosei F, Ma D (2012) Synthesis of Ni–Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane. Chemistry 18(25):7925–7930

    Article  Google Scholar 

  • Choi Y, Wang G, Nayfeh MH, Yau S-T (2008) Electro-oxidation of organic fuels catalyzed by ultrasmall silicon nanoparticles. Appl Phys Lett 93:164103

    Article  Google Scholar 

  • Cookson J (2012) The preparation of palladium nanoparticles. Platin Met Rev 56(2):83–98

    Article  Google Scholar 

  • Dub K, Ernst F, Pelsozy MC, Barthel J, Tillmann K (2010) Expansion of interatomic distances in platinum catalyst nanoparticles. Acta Mater 58:836–845

    Article  Google Scholar 

  • Falletta E, Ridi F, Fratini E, Vannucci C, Canton P, Bianchi S, Castelvetro V, Baglioni P (2011) A tri-block copolymer templated synthesis of gold nanostructures. J Coll Interface Sci 357(1):88–94

    Article  Google Scholar 

  • Feng CS, Ping Li J, Qian K, Ping Xu W, Lu Y, Xin Huang W, Hong Yu S (2010a) Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res 3:244–255

    Article  Google Scholar 

  • Feng W, Sun L-D, Zhang Y-W, Yan C-H (2010b) Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coord Chem Rev 254(9–10):1038–1053

    Article  Google Scholar 

  • Feng H, Libera JA, Stair PC, Miller JT, Elam JW (2011) Subnanometer palladium particles synthesized by atomic layer deposition. ACS Catal 1:665–673

    Article  Google Scholar 

  • Fominykh K, Feckl JM, Sicklinger J, Döblinger M, Böcklein S, Ziegler J, Peter L, Rathousky J, Scheidt E-W, Bein T, Fattakhova-Rohlfing D (2014) Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv Funct Mater 24:3123–3129

    Article  Google Scholar 

  • Godínez-Salomón F, Arce-Estrada E, Hallen-López M (2012) Electrochemical study of the Pt nanoparticles size effect in the formic acid oxidation. Int J Electrochem Sci 7:2566–2576

    Google Scholar 

  • Han X, Zhu Y, Yang X, Zhang J, Li C (2011) Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection. J Solid State Electrochem 15:511–517

    Article  Google Scholar 

  • Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129:10929–10936

    Article  Google Scholar 

  • Hsueh-Shih Chen, Ramachandran Vasant Kumar (2012) Growth of ultrasmall nanoparticles based on thermodynamic size focusing. J Nanopart Res 14: 1207, 6 pp

  • Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett 8(7):2027–2034

    Article  Google Scholar 

  • Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. NanoToday 2(4):14–18

    Google Scholar 

  • Hyo Kim B, Hackett MJ, Park J, Hyeon T (2014) Synthesis, characterization, and application of ultrasmall nanoparticles. Chem Mater 26:59–71

    Article  Google Scholar 

  • Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao J, Alivisatos AP, Kruse N, Somorjai GA (2012) Size-controlled model Co nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12:3091–3096

    Article  Google Scholar 

  • Jadhav SV, Mohan Jinka K, Bajaj HC (2012) Nanosized sulfated zinc ferrite as catalyst for the synthesis of nopol and other fine chemicals. Cat Today 198:98–105

    Article  Google Scholar 

  • Jie Niu J, Presser V, Karwacki CJ, Gogotsi Y (2011) Ultrasmall gold nanoparticles with the size controlled by the pores of carbide-derived carbon. Mater Express 1(4):259–266

    Article  Google Scholar 

  • Jin R (2012) The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotech Rev 1:31–56

    Article  Google Scholar 

  • Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A, Garg N (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1(19):2903–2910

    Article  Google Scholar 

  • Junejo Y, Baykal A (2014) Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles. Turk J Chem 38: 765–774. http://journals.tubitak.gov.tr/havuz/kim-1401-24.pdf

  • Kaur Rajput J, Kaur G (2013) CoFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for “click” synthesis of arylidene barbituric acid derivatives at room temperature. Chin J Cat 34:1697–1704

    Article  Google Scholar 

  • Kelsen V, Wendt B, Werkmeister S, Junge K, Bellerb M, Chaudret B (2013) The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C–C bonds. Chem Commun 49:3416–3418

    Article  Google Scholar 

  • Kharisov BI, Kharissova OV, Ortiz Méndez U (2012) Microwave hydrothermal and solvothermal processing of materials and compounds. In: The development and application of microwave heating, Wenbin Cao (ed), ISBN: 978-953-51-0835-1, InTech. doi:10.5772/45626. Available from: http://www.intechopen.com/books/the-development-and-application-of-microwave-heating/microwave-hydrothermal-and-solvothermal-processing-of-materials-and-compounds

  • Kharisov BI, Kharissova OV, Ortiz Mendez U (2012) Radiation-assisted synthesis of composites, materials, compounds, and nanostructures. In: Nicolais L, Borzacchiello (eds) A Wiley encyclopedia of composites. 5 Volume Set, 2nd edn. Wiley, Hoboken, pp 2569–2594

  • Kharisov BI, Kharissova OV, Ortiz-Méndez U (2013) Radiation Synthesis of Materials and Compounds. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kharissova OV, Kharisov BI, Jiménez-Pérez VM, Muñoz Flores B, Ortiz Méndez U (2013) Ultrasmall particles and nanocomposites: state of the art. RSC Adv 3:22648–22682

    Article  Google Scholar 

  • Kim S, Keun Yoo B, Chun K, Kang W, Choo J, Gong M-S, Joo S-W (2005) Catalytic effect of laser ablated Ni nanoparticles in the oxidative addition reaction for a coupling reagent of benzylchloride and bromoacetonitrile. J Mol Catal A 226:231–234

    Article  Google Scholar 

  • Kloust H, Pöselt E, Kappen S, Schmidtke C, Kornowski A, Pauer W, Moritz H-U, Weller H (2012) Ultrasmall biocompatible nanocomposites: a new approach using seeded emulsion polymerization for the encapsulation of nanocrystals. Langmuir 28:7276–7281

    Article  Google Scholar 

  • Knecht MR, Weir MG, Sue Myers V, Pyrz WD, Ye H, Petkov V, Buttrey DJ, Frenkel AI, Crooks RM (2008) Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: effect of the template on nanoparticle formation. Chem Mater 20:5218–5228

    Article  Google Scholar 

  • Komvokis VG, Marti M, Delimitis A, Vasalos IA, Triantafyllidis KS (2011) Catalytic decomposition of N2O over highly active supported Ru nanoparticles (≤3 nm) prepared by chemical reduction with ethylene glycol. Appl Catal B 103:62–71

    Article  Google Scholar 

  • Liao J, Zhao X, Zeng L, Song Y, Wang L, Wu A (2014) Studies studies studies of TiO2 nanoparticles nanoparticles and their precursors for the photocatalytic degradation of dihydroxybenzenes. Biochem Biophys J Neutron Therapy Cancer Treatm 2(1):1–7

    Google Scholar 

  • Lin C, Tao K, Hua D, Ma Z, Zhou S (2013) Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules 18:12609–12620

    Article  Google Scholar 

  • Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutchings GJ (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chem 3:551–556

    Article  Google Scholar 

  • Ma Z, Dai S (2011) Development of novel supported gold catalysts: a materials perspective. Nano Res 4(1):3–32

    Article  Google Scholar 

  • Manova E, Estournès C, Paneva D, Reh J-L, Tsoncheva T, Kunev B, Mitov I (2007) Mössbauer study of nanodimensional nickel ferrite—mechanochemical synthesis and catalytic properties. In: Lippens P-E, Jumas J-C, Génin J-MR (edsa) ICAME 2005, proceedings of the 28th International conference on the applications of the Mössbauer effect (ICAME 2005, Montpellier, volume I (Part I–II/V), pp 215–220. Acessed 4–9 Sept 2005

  • Martinez G, Malumbres A, Mallada R, Hueso JL, Irusta S, Bomati-Miguel O, Santamaria J (2012) Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis. Nanotech 23 (42): 425605/1–425605/9

  • Mazumder A, Davis J, Rangari V, Curry M (2013) Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Zero-Valent Ni Nanoparticles as Antimicrobial Agents. ISRN Nanomater Article ID 843709, p 9

  • McClure SM, Lundwall MJ, Goodman DW (2011) Planar oxide supported rhodium nanoparticles as model catalysts. PNAS 108(3):931–936

    Article  Google Scholar 

  • MD Taifur Rahman, Rebrov EV (2014) Microreactors for gold nanoparticles synthesis: from Faraday to flow. Processes 2:466–493

    Article  Google Scholar 

  • Meier JC, Galeano C, Katsounaros I, Witte J, Bongard HJ, Topalov AA, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer KJJ (2014) Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotech 5:44–67

    Article  Google Scholar 

  • Mo L, Kawi S (2014) An in situ self-assembled core–shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts. J Mater Chem A 2:7837–7844

    Article  Google Scholar 

  • Niu Y, Crooks RM (2003) Metallodendritic catalysis. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C R Chim 6:1049–1059

    Article  Google Scholar 

  • Odrozek K, Maresz K, Koreniuk A, Prusik K, Mrowiec-Białon J (2014) Amine-stabilized small gold nanoparticles supported on AlSBA-15 as effective catalysts for aerobic glucose oxidation. Appl Catal A 475:203–210

    Article  Google Scholar 

  • Olveira S, Forster SP, Seeger S (2014) Nanocatalysis: academic discipline and industrial realities. J Nanotech, 2014: Article ID 324089, p 19

  • Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K (2002) Dendritic nanoreactors encapsulating Pd particles for substrate-specific hydrogenation of olefins. Nano Lett 2(9):999–1002

    Article  Google Scholar 

  • Ou G, Xu L, He B, Yuan Y (2008) Enhanced stability of charged dendrimer-encapsulated Pd nanoparticles in ionic liquids. Chem Commun 35:4210–4212

    Article  Google Scholar 

  • Philippot K, Serp P (2013) Concepts in nanocatalysis. In: Serp P, Philippot K (eds) Nanomaterials in catalysis. Wiley-VCH, Weinheim, pp 1–54

    Google Scholar 

  • Piskorska-Hommel E, Arndt D, Wilkens T, Falta J, Bäumer M (2013) Colloidally prepared platinum nanoparticles deposited on iron oxide studied by XAFS. J Phys 430:012058

    Google Scholar 

  • Pittelkow M, Brock-Nannestad T, Moth-Poulsen K, Christensen JB (2008) Chiral dendrimer encapsulated Pd and Rh nanoparticles. Chem Commun 50:2358–2360

    Article  Google Scholar 

  • Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Coll Surf A 196:247–257

    Article  Google Scholar 

  • Prieto G, Zecevic G, Friedrich H, de Jong KP, de Jongh PE (2013) Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater 12:34–39

    Article  Google Scholar 

  • Qadir K, Hoon Joo S, Mun BS, Butcher DR, Russell Renzas J, Aksoy F, Liu Z, Somorjai GA, Young Park J (2012) Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett 12:5761–5768

    Article  Google Scholar 

  • Ritawidya R, Pujiyanto A, Mujinah M, Witarti W, Setiawan H, Ramli M, Kurniasih D, Yanuar A, Mutalib A, Kardono LB (2012) Synthesis and characterization of poly(amidoamine) dendrimers encapsulated 198Au nanoparticles. Atom Indones 38(3):118–126

    Google Scholar 

  • Salehi-Khojin A, Molly Jhong H-R, Rosen BA, Zhu W, Ma S, Kenis PJA, Masel RI (2013) Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C 117:1627–1632

    Article  Google Scholar 

  • Sambur JB, Chen P (2014) Approaches to single-nanoparticle catalysis. Annu Rev Phys Chem 65:395–422

    Article  Google Scholar 

  • Sawoo S, Srimani D, Dutta P, Lahiri R, Sarkar A (2009) Size controlled synthesis of Pd nanoparticles in water and their catalytic application in C–C coupling reactions. Tetrahedron 65:4367–4374

    Article  Google Scholar 

  • Shah A, Latif-ur-Rahman, Qureshi R, Zia-ur-Rehman (2012) Synthesis, characterization and applications of bimetallic (Au–Ag, Au–Pt, Au–Ru) alloy nanoparticles. Rev Adv Mater Sci 30:133–149

    Google Scholar 

  • Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134:8633–8645

    Article  Google Scholar 

  • Somorjai GA, Li Y (2010) Selective nanocatalysis of organic transformation by metals: concepts, model systems, and instruments. Top Catal 53:832–847

    Article  Google Scholar 

  • Souici AH, Keghouche N, Delaire JA, Remita H, Mostafavi M (2006) Radiolytic synthesis and optical properties of ultra-small stabilized ZnS nanoparticles. Chem Phys Lett 422(1–3):25–29

    Article  Google Scholar 

  • Sun T, Zhang Z, Xiao J, Chen C, Xiao F, Wang S, Liu Y (2013) Facile and green synthesis of palladium nanoparticles-graphene–carbon nanotube material with high catalytic activity. Sci Rep 3: Art. No. 2527, pp 6

  • Tagar ZA, Sirajuddin MN, Kalhoro MC, Kalwar NH, Junejo Y, Sara Hassan S (2012) Facile synthesis, characterization and catalytic function of gelatin stabilized gold nanoparticles. Pak J Anal Environ Chem 13(1):70–77

    Google Scholar 

  • Tian Y, Yu B, Li X, Li K (2011) Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J Mater Chem 21(8):2476–2481

    Article  Google Scholar 

  • Tritsaris GA, Greeley J, Rossmeisl J, Nørskov JK (2011) Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt. Catal Lett 141:909–913

    Article  Google Scholar 

  • Wang H-K, Yi C-Y, Tian L, Wang W-J, Fang J, Zhao J-H, Shen W-G (2012) Ag–Cu bimetallic nanoparticles prepared by microemulsion method as catalyst for epoxidation of styrene. J Nanomat Article ID 453915, pp 8

  • Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J, Li M (2013a) Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85:10289–10295

    Article  Google Scholar 

  • Wang T, Liu L, Zhu Z, Papakonstantinou P, Hu J, Liu H, Li M (2013b) Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ Sci 6:625–633

    Article  Google Scholar 

  • Wang F, Xu Y, Zhao K, He D (2014a) Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in Low temperature. Nano-Micro Lett 6(3):233–241

    Article  Google Scholar 

  • Wang Z, Xin L, Zhao X, Qiu Y, Zhang Z, Baturina OA, Li W (2014b) Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells. Renew Energy 62:556–562

    Article  Google Scholar 

  • Wu Y, Song M, Xin Z, Zhang X, Zhang Y, Wang C, Li S, Gu N (2011) Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotech 22: 225703, pp 8

  • Wu G, Huang H, Chen X, Cai Z, Jiang Y, Chen X (2013) Facile synthesis of clean Pt nanoparticles supported on reducedgraphene oxide composites: their growth mechanism and tuning oftheir methanol electro-catalytic oxidation property. Electrochim Acta 111:779–783

    Article  Google Scholar 

  • Yan W, Petkov V, Mahurin SM, Overbury SH, Dai S (2005) Powder XRD analysis and catalysis characterization of 3 ultra-small gold nanoparticles deposited on titania-modified SBA-15. Catal Commun 6(6):404–408

    Article  Google Scholar 

  • Yancey DF, Zhang L, Crooks RM, Henkelman G (2012) Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory. Chem Sci 3:1033–1040

    Article  Google Scholar 

  • Yang S, Dong J, Yao Z, Shen C, Shi X, Tian Y, Lin S, Zhang X (2014) One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation. Sci Reports 4: Art. No. 4501, pp 6

  • Yazid H, Adnan R, Akhyar Farrukh M (2013) Gold nanoparticles supported in Titania for the reduction of p-nitrophenol. Ind J Chem 52A:184–191

    Google Scholar 

  • Ye F, Cao X, Yu L, Chen S, Lin W (2012) Synthesis and catalytic performance of PtRuMo nanoparticles supported on graphene–carbon nanotubes nanocomposites for methanol electro-oxidation. Int J Electrochem Sci 7:1251–1265

    Google Scholar 

  • Yu L, Shi Y, Zhao Z, Yin H, Wei Y, Liu J, Kang W, Jiang T, Wang A (2011) Ultrasmall silver nanoparticles supported on silica and their catalytic performances for carbon monoxide oxidation. Catal Commun 12:616–620

    Article  Google Scholar 

  • Zhang G-R, Zhao D, Feng Y-Y, Zhang B, Sheng SuD, Liu G, Xu B-Q (2012a) Catalytic Pt-on-Au nanostructures: why Pt becomes more active on smaller Au particles. ACS Nano 6(3):2226–2236

    Article  Google Scholar 

  • Zhang Z, Xin L, Li W (2012b) Supported gold nanoparticles as anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC). Int J Hydr Ener 3(7):9393–9401

    Article  Google Scholar 

  • Zhang T, Zhao H, He S, Liu K, Liu H, Yin Y, Gao C (2014) Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. ACS Nano 8(7):7297–7304

    Article  Google Scholar 

  • Zinchenko A, Miwa Y, Lopatina LI, Sergeyev VG, Murata S (2014) DNA Hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications. ACS Appl Mater Interface 6(5):3226–3232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana V. Kharissova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharisov, B.I., Dias, H.V.R., Kharissova, O.V. et al. Ultrasmall particles in the catalysis. J Nanopart Res 16, 2665 (2014). https://doi.org/10.1007/s11051-014-2665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2665-y

Keywords

Navigation