Nitrogen-doped multi-walled carbon nanotubes modified with platinum, palladium, rhodium and silver nanoparticles in electrochemical sensing

Abstract

Nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were fabricated by means of chemical vapour deposition technique and decorated with platinum (PtNPs), palladium (PdNPs), rhodium (RhNPs) and silver (AgNPs) nanoparticles possessing diameter 2.7, 2.6, 2.7 and 3.4 nm, respectively. The electrochemical responses of composite films, further denoted as N-MWCNTs/MNPs (M: Pt, Pd, Rh and Ag) towards ferrocyanide/ferricyanide, [Fe(CN)6]3−/4− were investigated in large concentration range (0.099–0.990 mM) in potassium chloride solution (1.0 M). The findings demonstrate that the electrochemical response and sensitivity of N-MWCNTs are improved significantly upon modification with metal nanoparticles. A strong dependence of film’s electrochemical fineness on type of metal nanoparticles used for modification can be observed. Namely, the current response, the charge-transfer kinetics, and the detection capability of novel composite films enhance with the following order: N-MWCNTs < N-MWCNTs/RhNPs < N-MWCNTs/PdNPs < N-MWCNTs/PtNPs < N-MWCNTs/AgNPs. The findings demonstrate that the novel N-MWCNTs/MNPs composite films can be considered as powerful and useful materials for electrochemical sensing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Attard GS, Bartlett PN, Colemen NRB, Elliott JM, Owen JR, Wang JH (1997) Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278:838–840

    Article  Google Scholar 

  2. Barreira SVP, García-Morales V, Pereira CM, Manzanares JA, Silva F (2004) Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified electrodes. J Phys Chem B 108:17973–17982

    Article  Google Scholar 

  3. Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–375

    Article  Google Scholar 

  4. Brahman PK, Dar RA, Tiwari S, Pitre KS (2012) Electrochemical behavior of gatifloxacin at multi-walled carbon nanotube paste electrode and its interaction with DNA. Rev Anal Chem 31:83–92

    Article  Google Scholar 

  5. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  6. Chung HT, Won JH, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun 4:1922. doi: 10.1038/ncomms2944

    Article  Google Scholar 

  7. Doron A, Katz E, Willner L (1995) Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 11:1313–1317

    Article  Google Scholar 

  8. Dumitrescu I, Unwin PR, Macpherson JV (2009) Electrochemistry at carbon nanotubes: perspective and issues. Chem Commun 45:6886–6901

    Article  Google Scholar 

  9. Galus Z (1994) Fundamentals of electrochemical analysis, 2nd edn. Ellis Horwood, New York, p 257

    Google Scholar 

  10. He H, Xie Q, Zhang Y, Yao S (2005) A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction. J Biochem Biophys Methods 62:191–205

    Article  Google Scholar 

  11. Hirano A, Kanai M, Nara T, Sugawara M (2001) A glass capillary ultramicroelectrode with an electrokinetic sampling ability. Anal Sci 17:37–43

    Article  Google Scholar 

  12. Jarvi TD, Sriramulu S, Stuve EM (1997) Potential dependence of the yield of carbon dioxide from electrocatalytic oxidation of methanol on platinum(100). J Phys Chem B 101:3649–3652

    Article  Google Scholar 

  13. Knauer A, Köhler JM (2013) Screening of multiparameter spaces for silver nanoprism synthesis by microsegmented flow technique. Chem Ing Tech 85:467–475

    Article  Google Scholar 

  14. Knauer A, Thete A, Li S, Romanus H, Csaki A, Fritzsche W, Köhler JM (2011) Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis. Chem Eng J 166:1164–1169

    Article  Google Scholar 

  15. Knauer A, Csaki A, Möller F, Hühn C, Fritzsche W, Köhler JM (2012) Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties. J Phys Chem C 116:9251–9258

    Article  Google Scholar 

  16. Köhler JM, Li S, Knauer A (2013) Why is micro segmented flow particularly promising for the synthesis of nanomaterials? Chem Eng Technol 36:887–899

    Article  Google Scholar 

  17. Konopka SJ, McDuffie B (1970) Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem 42:1741–1746

    Article  Google Scholar 

  18. Li Y, Chen SM (2012) The Electrochemical properties of acetaminophen on bare glassy carbon electrode. Int J Electrochem Sci 7:2175–2187

    Google Scholar 

  19. Liu S, Tang Z, Wang E, Dong S (2000) Electrocrystallized platinum nanoparticle on carbon substrate. Electrochem Commun 2:800–804

    Article  Google Scholar 

  20. Lu Q, Hu S, Pang D, He Z (2005) Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem Commun 20:2584–2585

    Article  Google Scholar 

  21. Luo H, Shi Z, Li N, Gu Z, Zhang Q (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915–920

    Article  Google Scholar 

  22. Musamech M, Wang J, Merkoci A, Lin YH (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4:743–746

    Article  Google Scholar 

  23. Nicholson R (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  Google Scholar 

  24. Niranjana E, Swamy BEK, Naik RR, Sherigara BS, Jayadevappa H (2009) Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode: a cyclic voltammetric study. J Electroanal Chem 631:1–9

    Article  Google Scholar 

  25. Pandurangachar M, Swamy BEK, Chandrashekar BN, Gilbert O, Reddy S, Sherigara BS (2010) Electrochemical investigations of potassium ferricyanide and dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate modified carbon paste electrode: a cyclic voltammetric study. Int J Electrochem Sci 5:1187–1202

    Google Scholar 

  26. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim Acta 55:6239–6247

    Article  Google Scholar 

  27. Perenlei G, Tee TW, Yusof NA, Kheng GJ (2011) Voltammetric detection of potassium ferricyanide mediated by multi-walled carbon nanotube/titanium dioxide composite modified glassy carbon electrode. Int J Electrochem Sci 6:520–531

    Google Scholar 

  28. Roto R, Villemure G (2002) Electrochemical impedance spectroscopy of electrodes modified with thin films of Ni/Al/Cl layered double hydroxides. J Electroanal Chem 527:123–130

    Article  Google Scholar 

  29. Szroeder P, Tsierkezos NG, Scharff P, Ritter U (2010) Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers. Carbon 48:4489–4496

    Article  Google Scholar 

  30. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  Google Scholar 

  31. Tsierkezos NG, Ritter U (2010) Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. J Appl Electrochem 40:409–417

    Article  Google Scholar 

  32. Tsierkezos NG, Ritter U (2011) Determination of impedance spectroscopic behaviour of triphenylphosphine on various electrodes. Anal Lett 44:1416–1430

    Article  Google Scholar 

  33. Tsierkezos NG, Ritter U (2012) Electrochemical responses and sensitivities of films based on multi-walled carbon nanotubes in aqueous solutions. J Solut Chem 41:2047–2057

    Article  Google Scholar 

  34. Wang J, Agnes L (1992) Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes. Anal Chem 64:456–459

    Article  Google Scholar 

  35. Wang L, Wang E (2004) Direct electron-transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem Comm 6:49–54

    Article  Google Scholar 

  36. Wang M, Wang L, Yuan H, Ji X, Sun C, Ma L, Bai Y, Li T, Li J (2004) Immunosensors based on layer-by-layer self-assembled Au colloidal electrode for the electrochemical detection of antigen. Electroanalysis 16:757–764

    Article  Google Scholar 

  37. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  Google Scholar 

  38. Xu X, Jiang S, Hu Z, Liu S (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano 4:4292–4298

    Article  Google Scholar 

  39. Yu J, Zhao J, Hu C, Hu S (2007) Enhanced oxidation of estrone at multi-wall carbon nanotubes film electrode: direct evidence for the advantage of carbon nanotubes over other carbonaceous materials. J Nanosci Nanotechnol 7:1631–1638

    Article  Google Scholar 

  40. Zhang J, Oyama M (2005) Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta 540:299–306

    Article  Google Scholar 

  41. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Doreen Schneider and Mrs. Sabine Heusing (Ilmenau University of Technology). The scientific work concerning the synthesis of metal nanoparticles was financially supported by BMBF-project “BactoCat” (Kz: 031A161A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 745 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsierkezos, N.G., Haj Othman, S., Ritter, U. et al. Nitrogen-doped multi-walled carbon nanotubes modified with platinum, palladium, rhodium and silver nanoparticles in electrochemical sensing. J Nanopart Res 16, 2660 (2014). https://doi.org/10.1007/s11051-014-2660-3

Download citation

Keywords

  • Electrochemical sensing
  • Metal nanoparticles
  • Multi-walled carbon nanotubes
  • Palladium
  • Platinum
  • Rhodium
  • Silver