Investigating the effects of particle size and chemical structure on cytotoxicity and bacteriostatic potential of nano hydroxyapatite/chitosan/silica and nano hydroxyapatite/chitosan/silver; as antibacterial bone substitutes

  • Shima TavakolEmail author
  • Mohammad Reza NikpourEmail author
  • Elham Hoveizi
  • Behnaz Tavakol
  • Seyed Mahdi Rezayat
  • Mahdi Adabi
  • Sahebeh Shajari Abokheili
  • Mohsen JahanshahiEmail author
Research Paper


The restoration of defective bone tissue and complications related to surgery and fracture site infection are major concerns in orthopedic surgeries. However, it is crucial to develop osteoconductive and bacteriostatic composites. Chitosan/nano hydroxyapatite (CT/n-HAp) powder containing of Ag and Si were prepared by an in situ hybridization method. The aim of this work was to elucidate the effect of size, surface roughness, and chemical structure of mentioned nanocomposites on cytotoxicity and bacteriostatic activity via human osteoblast cells and Escherichia Coli, respectively. Particle size, surface roughness, reactive oxygen specious production, and bioactivity of nanocomposites were investigated by X ray diffraction, atomic force microscopy, DPPH assay, and SEM/UV–Visible spectrophotometer, respectively. Bacterial colony counting test, MTT assay and lactate dehydrogenase (LDH) release were performed as bacteriostatic and biocompatibility tests. The results showed that CT/n-HAp/Ag with smaller particle size in the range of 1–22.6 nm (10.00 ± 0.09 nm) than CT/n-HAp/Si in the range of 3–72.5 nm (18.00 ± 0.14 nm) exhibits higher cell viability and bacteriostatic activity, and less LDH release from cell plasma membrane. Integration of Ag into the nanocomposite hindered the release of Ag+ ions and restricts cytotoxic potential on cells. Higher cytotoxic effect of CT/n-HAp/Si might be related to proton concentration derived from nanocomposite and its chemical structure. In conclusion, the strong bone regeneration potential of CT/n-HAp and good biocompatibility and bacteriostatic activity of CT/n-HAp/Ag make it as potential bacteriostatic bone filler in site of infected bone fracture.


Nano hydroxyapatite Tri-phasic nanocomposite Particle size Silver Bacteriostatic Biocompatibility Nanomedicine 



This work was supported by grant from Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.


  1. Albano C, Perera R, Cataño L, Karam A, González G (2011) Prediction of mechanical properties of composites of HDPE/HA/EAA. J Mech Behav Biomed 4(3):467–475CrossRefGoogle Scholar
  2. Batandier C, Fontaine E, Kériel C, Leverve XM (2002) Determination of mitochondrial reactive oxygen species: methodological aspects. J Cell Mol Med 6(2):175–187CrossRefGoogle Scholar
  3. Best S, Zou S, Brooks RA, Huang J, Rushton N, Bonfield W (2008) The osteogenic behaviour of silicon substituted hydroxyapatite. Key Eng Mat 361:985–988CrossRefGoogle Scholar
  4. Bhattacharjee S, de Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H et al (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7(1):25CrossRefGoogle Scholar
  5. Botelho C, Brooks R, Best S, Lopes M, Santos J, Rushton N et al (2006) Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A 79:723–730CrossRefGoogle Scholar
  6. Carlisle EM (1980a) A silicon requirement for normal skull formation in chicks. J Nutr 110:352–359Google Scholar
  7. Carlisle EM (1980b) Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr 110:1046–1056Google Scholar
  8. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD et al (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517CrossRefGoogle Scholar
  9. Chen W, Oh S, Ong A, Oh N, Liu Y, Courtney H et al (2007) Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res A 82(4):899–906CrossRefGoogle Scholar
  10. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588CrossRefGoogle Scholar
  11. Giovanardi D (2014) Cranial osteomyelitis due to E. coli infection in commercial layers. Vet Rec 18;174(3):76Google Scholar
  12. Heinemann S, Coradin T, Worch H, Wiesmann H, Hanke T (2011) Possibilities and limitations of preparing silica/collagen/hydroxyapatite composite xerogels as load-bearing biomaterials. Compos Sci Technol 71(16):1873–1880CrossRefGoogle Scholar
  13. Hui Q, Chen Z, Zhiquan A, Yao J, Yaochao Z, Jiaxin W, Xin L, Bing H, Xianlong Z, Yang W (2014) Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomed 9:2469–2478Google Scholar
  14. Hwang S, Jeong S (2011) Electrospun nano composites of poly (vinyl pyrrolidone)/nano-silver for antibacterial materials. J Nanosci Nanotechnol 11(1):610–613CrossRefGoogle Scholar
  15. Itoh S, Kikuchi M, Takakuda K, Nagaoka K, Koyama Y, Tanaka J et al (2002) Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J Biomed Mater Res 63(5):507–515CrossRefGoogle Scholar
  16. Jiang J, Huo K, Chen S, Xin Y, Xu Y, Wu Z (2009) Intracellular chromosome breaks on silicon surface. Biomaterials 30:2661–2665CrossRefGoogle Scholar
  17. Jongwattanapisan P, Charoenphandhu N, Krishnamra N, Thongbunchoo J, Tang I, Hoonsawat R et al (2011) In vitro study of the SBF and osteoblast-like cells on hydroxyapatite/chitosan–silica nanocomposite. Mater Sci Eng C 31:290–299CrossRefGoogle Scholar
  18. Khanna R, Katti KS, Katti DR (2010) In situ swelling behavior of chitosan–polygalacturonic acid/hydroxyapatite nanocomposites in cell culture media. Int J Polym Sci 1–12Google Scholar
  19. Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH et al (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20CrossRefGoogle Scholar
  20. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924CrossRefGoogle Scholar
  21. Luo X, Zhang L, Morsi Y, Zou Q, Wang Y, Gao S et al (2011) Hydroxyapatite/polyamide 66 porous scaffold with an ethylene vinyl acetate surface layer used for simultaneous substitute and repair of articular cartilage and underlying bone. Appl Surf Sci 257(23):9888–9894CrossRefGoogle Scholar
  22. Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40(2):209–220CrossRefGoogle Scholar
  23. Mo A, Liao J, Xu W, Xian S, Li Y, Bai S (2008) Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci 255(2):435–438CrossRefGoogle Scholar
  24. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346CrossRefGoogle Scholar
  25. Murugan R, Panduranga Rao K (2002) Biodegradable coralline hydroxyapatite composite-gel using natural alginate. Key Eng Mater 240:407–410Google Scholar
  26. Murugan R, Rao KP (2003) Graft polymerization of glycidylmethacrylate onto coralline hydroxyapatite. J Biomater Sci Polym Ed 14(5):457–468CrossRefGoogle Scholar
  27. Muzzarelli R (2011) CT composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr Polym 83:1433–1445CrossRefGoogle Scholar
  28. Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K (2012) “Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 40(3):287–291CrossRefGoogle Scholar
  29. Pang X, Zhitomirsky I (2008) Electro deposition of hydroxyapatite–silver–CT nanocomposite coatings. Surf Coat Technol 202:3815–3821CrossRefGoogle Scholar
  30. Pape HC, Evans A, Kobbe P (2010) Autologous bone graft: properties and techniques. J Orthop Trauma 24:S36–S40CrossRefGoogle Scholar
  31. Pratsinis A, Hervella P, Leroux J-C, Pratsinis SE, Sotiriou GA (2013) Toxicity of silver nanoparticles in macrophages. Small 15:2576–2584CrossRefGoogle Scholar
  32. Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205(8):2785–2792CrossRefGoogle Scholar
  33. Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26(5):471–482CrossRefGoogle Scholar
  34. Sahithi K, Swetha M, Prabaharan M, Moorthi A, Saranya N, Ramasamy K et al (2010) Synthesis and characterization of nanoscale hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 6:333–339CrossRefGoogle Scholar
  35. Santos HA, Riikonen J et al (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. Acta Biomater 6(7):2721–2731CrossRefGoogle Scholar
  36. Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49(2):188–193CrossRefGoogle Scholar
  37. Shokrgozar M, Farokhi M, Rajaei F, Bagheri M, Azari S, Ghasemi I (2010) Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells. J Biomed Mater Res A 95:1074–1083CrossRefGoogle Scholar
  38. Sionkowska A, Kozłowska J (2010) Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. Int J Biol Macromol 47(4):483–487CrossRefGoogle Scholar
  39. Stoesser N, Pocock J, Moore CE, Soeng S, Hor P, Sar P (2013) The epidemiology of pediatric bone and joint infections in Cambodia, 2007–11. J Trop Pediatr 59(1):36–42CrossRefGoogle Scholar
  40. Tan F, Naciri M, Dowling D, Al-Rubeai M (2012) In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity. Biotech adv 30(1):352–362CrossRefGoogle Scholar
  41. Tavakol S, Kashani IR, Azami M, Khoshzaban A, Tavakol B, Kharrazi S et al (2012) In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM. J Nanopart Res 14(12):1–14CrossRefGoogle Scholar
  42. Tavakol S, Khoshzaban A, Azami M, Kashani IR, Tavakol H, Yazdanifar M, Sorkhabadi SM (2013a) The effect of carrier type on bone regeneration of demineralized bone matrix in vivo. J Craniofac Surg 24(6):2135–2140CrossRefGoogle Scholar
  43. Tavakol S, Nikpour M, Amani A, Soltani M, Rabiee S, Rezayat S et al (2013b) Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study. J Nanopart Res 15(1):1–16CrossRefGoogle Scholar
  44. Thian E, Huang J, Best S, Barber Z, Bonfield W (2006a) Silicon-substituted hydroxyapatite thin films: Effect of annealing temperature on coating stability and bioactivity. J Biomed Mater Res A 78:121–128CrossRefGoogle Scholar
  45. Thian ES, Huang J, Best SM, Barber ZH, Brooks RA, Rushton N et al (2006b) The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials 27:2692–2698CrossRefGoogle Scholar
  46. Thompson ML, Kateley LJ (1999) The Nernst equation: determination of equilibrium constants for complex ions of silver. J Chem Educ 76(1):95CrossRefGoogle Scholar
  47. Wagoner Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7(1):16–30CrossRefGoogle Scholar
  48. Yamaguchi I, Tokuchi K et al (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55(1):20–27CrossRefGoogle Scholar
  49. Zyman Z, Rokhmistrov D, Ivanov I, Epple M (2006) The influence of foreign ions on the crystal lattice of hydroxyapatite upon heating. Mater Wiss Werkst Technol 37(6):530–532CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Shima Tavakol
    • 1
    • 2
    • 3
    Email author
  • Mohammad Reza Nikpour
    • 4
    Email author
  • Elham Hoveizi
    • 5
  • Behnaz Tavakol
    • 6
  • Seyed Mahdi Rezayat
    • 1
  • Mahdi Adabi
    • 1
  • Sahebeh Shajari Abokheili
    • 7
  • Mohsen Jahanshahi
    • 4
    Email author
  1. 1.Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  2. 2.Student’s Scientific Research CenterTehran University of Medical SciencesTehranIran
  3. 3.School of Medicine, Razi Institute for Drug ResearchIran University of Medical SciencesTehranIran
  4. 4.Nanobiotechnology Research Group, Nanobiotechnology Research Department, Nanotechnology Research InstituteBabol University of TechnologyBabolIran
  5. 5.Department of Biology, Faculty of SciencesShahid Chamran UniversityAhvazIran
  6. 6.Department of Medicine, School of MedicineKashan University of Medical SciencesKashanIran
  7. 7.Faculty of Chemical Engineering–Polymer BranchAzad University of ShirazShirazIran

Personalised recommendations