Journal of Nanoparticle Research

, 16:2600 | Cite as

Photoelectrical properties of surfactant-free kesterite Cu2ZnSnSe4 hydrophilic nanocrystal ink and the stability in polar solvents

  • Priya Kush
  • Sasanka Deka
Research Paper


Colloidal semiconductor nanocrystals (NCs) with surfactant/ligand capping have easy solubility in nonpolar organic solvents but have hindered charge transport, diminishing the electrical efficiency of the material. In the present article, synthesis of bare Cu2ZnSnSe4 NCs of 20–30 nm average diameter with high quality and phase purity has been demonstrated by a simple hydrothermal route, without using any surfactant and hazardous organic solvents. As-synthesized samples can be easily dispersed in polar solvents by electrostatic stabilization and utilized for thin film fabrication. Photovoltaic cell made from the fine high-quality bare Cu2ZnSnSe4 NCs shows accountable fourfold photoresponse electrical conductivity upon illumination (AM 1.5) attributed to ligand-free nature of the synthesized nanoparticles. The dispersibility of the material in a variety of solvents providing electrostatic stabilization has been explored for application purpose which is useful for the material utilization without any pre- or post-deposition treatment for low-cost photovoltaic applications.


Cu2ZnSnSe4 Kesterite Nanocrystal ink Photovoltaics Photoelectrical properties 



PK thanks UGC-India research fellowship. SD gratefully acknowledges the financial support received from DAE-BRNS (2011/20/37P/11/BRNS/1733) and Delhi University. We thank We thank Dr. A. Sakthivel (Inorganic Materials and Catalysis Group, Grant DST SR/S1/PC-11/2011) for the help with BET analysis and USIC-DU, SAIF-AIIMS and AIRF-JNU for instrumentation facility.


  1. Ahn S, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Yun JH (2010) Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: on the discrepancies of reported band gap values. Appl Phys Lett 97:021905CrossRefGoogle Scholar
  2. Babu GS, Kumar YBK, Bhaskar PU, Raja VS (2008) Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer. Semicond Sci Technol 23:085023CrossRefGoogle Scholar
  3. Bag S, Gunawan O, Gokmen T, Zhu Y, Todorov TK, Mitzi DB (2012) Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency. Energy Environ Sci 5:7060–7065CrossRefGoogle Scholar
  4. Bannister E, Fowles GWA (1958) Reactions of tin(IV) halides with ammonia derivatives. Part I. The reaction of tin(IV) chloride with liquid ammonia. J Chem Soc 1958:751–755Google Scholar
  5. Bubenhofer SB, Schumacher CM, Koehler FM, Luechinger NA, Sotiriou GA, Grass RN, Stark WJ (2012) Electrical resistivity of assembled transparent inorganic oxide nanoparticle thin layers: influence of silica, insulating impurities, and surfactant layer thickness. ACS Appl Mater Interfaces 4:2664–2671CrossRefGoogle Scholar
  6. Chen S, Gong XG, Walsh A, Wei SH (2010a) Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl Phys Lett 96:021902CrossRefGoogle Scholar
  7. Chen S, Yang JH, Gong XG, Walsh A, Wei SH (2010b) Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys Rev B 81:245204CrossRefGoogle Scholar
  8. Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38CrossRefGoogle Scholar
  9. Cullity BD (1956) X-ray diffraction. Addison-Wesley Publishing Company, Inc., Reading, p 99Google Scholar
  10. Gates B, Mayers B, Cattle B, Xia Y (2002) Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Funct Mater 12:219–227CrossRefGoogle Scholar
  11. Guo Q, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386CrossRefGoogle Scholar
  12. Gürel T, Sevik C, Çağın T (2011) Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys Rev B 84:205201CrossRefGoogle Scholar
  13. Gütay L, Redinger A, Djemour R, Siebentritt S (2012) Lone conduction band in Cu2ZnSnSe4. Appl Phys Lett 100:102113CrossRefGoogle Scholar
  14. Holman ZC, Kortshagen UR (2011) Nanocrystal inks without ligands: stable colloids of bare germanium nanocrystals. Nano Lett 11:2133–2136CrossRefGoogle Scholar
  15. Huheey JE, Keiter EA, Keiter RL, Medhi OK (2006) Inorganic chemistry: principles of structure and reactivity, 4th edn. Pearson Education, New DelhiGoogle Scholar
  16. Khare A, Himmetoglu B, Johnson M, Norris DJ, Cococcioni M, Aydil ES (2012) Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. J Appl Phys 111:083707CrossRefGoogle Scholar
  17. Kush P, Ujjain SK, Mehra NC, Jha P, Sharma RK, Deka S (2013) Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics. ChemPhysChem 14:2793–2799CrossRefGoogle Scholar
  18. Lee PY, Shei SC, Hsu EH, Chang SJ, Chang SP (2013) Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine. Mater Lett 98:71–73CrossRefGoogle Scholar
  19. Li Q, Shi L (2011) Thickness tunable Cu2ZnSnSe4 nanosheets. CrystEngComm 13:6507–6510CrossRefGoogle Scholar
  20. Liu Y, Yao D, Shen L, Zhang H, Zhang X, Yang B (2012) Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals. J Am Chem Soc 134:7207–7210CrossRefGoogle Scholar
  21. Mainz R, Walker BC, Schmidt SS, Zander O, Weber A, Rodriguez-Alvarez H, Just J, Klaus M, Agrawal R, Unold T (2013) Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. Phys Chem Chem Phys 15:18281–18289CrossRefGoogle Scholar
  22. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, Dodabalapur A, Barbara PF, Korgel BA (2008) Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J Am Chem Soc 130:16770–16777CrossRefGoogle Scholar
  23. Persson C (2010) Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J Appl Phys 107:053710CrossRefGoogle Scholar
  24. Pinto SRC, Rolo AG, Chahboun A, Kashtiban RJ, Bangert U, Gomes MJM (2010) Raman study of stress effect on Ge nanocrystals embedded in Al2O3. Thin Solid Films 518:5378–5381CrossRefGoogle Scholar
  25. Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc 131:12054–12055CrossRefGoogle Scholar
  26. Salomé PMP, Fernandes PA, da Cunha AF, Leitão JP, Malaquias J, Weber A, González JC, daSilva MIN (2010) Growth pressure dependence of Cu2ZnSnSe4 properties. Sol Energy Mater Sol Cells 94:2176–2180CrossRefGoogle Scholar
  27. Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary chalcogenide nanocrystals: stannite Cu2ZnxSnySe1+x+2y. J Am Chem Soc 132:4514–4515CrossRefGoogle Scholar
  28. Siebentritt S, Schorr S (2012) Kesterites—a challenging material for solar cells. Prog Photovolt Res Appl 20:512–519CrossRefGoogle Scholar
  29. Singh A, Geaney H, Laffir F, Ryan KM (2012) Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J Am Chem Soc 134:2910–2913CrossRefGoogle Scholar
  30. Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA (2009) Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J Am Chem Soc 131:12554–12555CrossRefGoogle Scholar
  31. Tang HJ, Yan M, Zhang H, Ma XY, Wang L, Yang D (2005) Preparation and characterization of CuInS2 thin films for solar cells by chemical bath deposition. Chem Res Chin Univ 21:236–239Google Scholar
  32. Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J (2012) Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm 14:3847–3850CrossRefGoogle Scholar
  33. Wahab LA, El-Den MB, Farrag AA, Fayek SA, Marzouk KH (2009) Electrical and optical properties of chalcopyrite compounds. J Phys Chem Solids 70:604–608CrossRefGoogle Scholar
  34. Wang JJ, Hu JS, Guo YG, Wan LJ (2012) Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic–inorganic hybrid photodetectors. NPG Asia Mater 4:e2. doi: 10.1038/am.2012.2 CrossRefGoogle Scholar
  35. Wibowo RA, Jung WH, Kim KH (2010) Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders. J Phys Chem Solids 71:1702–1706CrossRefGoogle Scholar
  36. Xia Y, Chen Z, Zhang Z, Fang X, Liang G (2014) A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles. Nanoscale Res Lett 9:208CrossRefGoogle Scholar
  37. Xu CY, Zhang PX, Yan L (2001) Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spectrosc 32:862–865CrossRefGoogle Scholar
  38. Zoppi G, Forbes I, Miles RW, Dale PJ, Scragg JJ, Peter LM (2009) Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Prog Photovolt Res Appl 17:315–319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of DelhiNew DelhiIndia

Personalised recommendations